网站首页  > 师资力量  > 专任教师  > 副教授
+86 02589681215
程鑫 | 副教授 Associate Professor
个人介绍

1985年8月生,天文与空间科学学院副教授,博导。2012年6月获南京大学天文学博士学位,2010年9月至2011年12月在美国乔治梅森大学联合培养,2019年2月至2021年12月在德国马普太阳系研究所做“洪堡学者”。主要研究方向为日冕物质抛射、磁场重联、太阳射电暴、日冕等离子体诊断、空间天气预报和星冕物质抛射等。近几年在国际会议做特邀报告十几次。2013年获江苏省优秀博士学位论文奖、美国地球物理学会“Sunanda and Santimay Basu Early Career Award”,2015年获第五届中国天文学会“黄授书奖”,2017年获国家基金委优秀青年基金、江苏省杰出青年基金资助。 


Born in 1985. Associate professor in School of Astronomy and Space Science, Nanjing University, member of Chinese Astronomy Society and American Geophysical Union, reviewer of main scientific journals in astronomy and space science including Science, ApJ, Solar Physics, JGR, RAA et al. I received PhD degree in astronomy in 2012, visited George Mason University as jointed PhD student from 2010.9 to 2011.12 and Max Planck Institute for Solar System Research as Humboldtian from 2019.2 to 2021.12. My main study interests include coronal mass ejections, magnetic reconnection, solar radio bursts, space weather prediction, and stellar mass eruptions et al. I received AGU Basu Early Career Award in Sun-Earth systems science in 2013, Chinese Astronomy Society 5th "Huang Shu-Shu" Award in 2015, NFSC Award for Excellent Yong Scholars and NFSC Award of Jiangsu Province for Distinguished Yong Scholars in 2017.


承担课程

《空间物理导论》Introduction of Space Physics (for junior)

  chap1_Introductionchap2_plasma_picturechap3_single_particlechap4_Magnetohydrostaticschap4_MHD_applicationchap5_wave,

  chap6_solar_eruptionschap6_solar_atmospherechap6_solar_instrumentschap8_magnetospherechap7_solarwindchap9_Summary

《天文与天体物理中的热点研究》Hot Topics in Astronomy and Astrophysics (for junior)

《IDL-Python在天文与空间科学中的应用》IDL-Python Application in Astronomy and Space Science (for freshman)


研究领域

Study Fields: Solar Physics and Space Science

---Understanding Energetic Eruptions in the Heliosphere and Beyond 

Today of The Sun

Visited ScientistsUseful LinksUseful Tools

Papers for new PhD studentsPapers on Reconnection




Project 1. Origin and Evolution of Coronal Mass Ejections

Coronal mass ejections (CMEs) and solar flares are the most energetic eruptive phenomena in our solar system and can release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind, probably giving rise to severe space weather effects. The aim of this project is toward understanding the orgin and evolution of CMEs/flares through multi-wavelength observational perspective. The figure on the right shows a CME observed by the Large Angle and Spectrometric Coronagraph on board the Solar and Heliospheric Observatory. The zoom-in of the flaring region indicated by the white box shows an erupting hot magnetic flux rope (10 million-degree) at 131 angstrom observed by the Atmospheric Imaging Assembly telescope on board the Solar Dynamics Observatory.

Publications:

Cheng, X., Zhang, J., Liu, Y., Ding, M. D, 2011, ApJL 732, L25

Zhang, J., Cheng, X Ding, M. D., 2012 Nature Communications 3, 747 (Featured)

Cheng, X., Zhang, J., Ding, M. D., et al., 2013, ApJ 763, 43

Cheng, X., Ding, M. D., Guo, Y., et al., 2014, ApJ 780, 28

Cheng, X., Ding, M. D., 2016, ApJS 225, 16

Zhou, Z. J. Cheng, X., Liu, L. J., et al. 2019, ApJL, 877, L28

Cheng, X., Zhang, J., Kliem, B., Torok, T., et al. 2020, ApJ, 894, 85

Code for Kinematic analysis



Project 2. Structure and Evolution of Magnetic Flux Ropes

Magnetic flux rope (MFR) is a volumetic plasma structure with magnetic field lines wrapping around a central axis. It is a foundmental magnetic structure in the Universe, has been invloved in various astrophysical contexts like the magnetotail of the Earth, the Nebula and the black hole system. The aim of this project is to address the structure and evolution of the MFR, in particular the relation to the dynamics of CMEs via the combination of observation and MHD simulation. The figure on the right shows the emission feature of the pre-eruptive MFR on 2012 July 12 at the different temperatures (3-4 MK and 8-10 MK) and corresponding 3D magnetic structure.

Publications:

Cheng, X., Zhang, J., Saar, S. H., Ding, M. D., 2012, ApJ 761, 62

Cheng, X., Ding, M. D., Zhang, J., et al. 2014, ApJ 789, 93

Cheng, X., Ding, M. D., Fang, C., 2015, ApJ 804, 82

Liu, L. J., Cheng, X., Wang, Y. M., et al. 2018, ApJL, 867, L5

Liu, L. J., Cheng, X., Wang, Y. M., et al. 2019, ApJ, 884, 45

Xing, C., Cheng, X., Ding, M. D., 2020, The Innovation, 3, 100059

Code for DEM inversion



Project 3. Magnetic Reconnection and Turbulence

Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in the Universe. During solar eruptions, the reconnection, taking place between CMEs and flares, releases magnetic energy explosively to power the CME eruption and the flare emission. The aim of this project is to reveal 3D features of magnetic reconnection and its relation to turbulence during CMEs/flares through observation and MHD simulation. The figure on the right displays 3D magnetic field structures during the flux rope eruption, in which the reconnection converts two sheared overlying field lines to a flare loop and a twisted field line that is added to the pre-existing rising flux rope.

Publications:

Cheng, X., Zhang, J., Liu, Y., Ding, M. D, 2011, ApJL 732, L25

Sun, J. Q., Cheng, X., Ding, M. D., et al., 2015, Nature Communications 6, 7598 (Featured)

Cheng, X., Li, Y., Wan, L. F., et al., 2018, ApJ 866, 64 (Press release)

Xing, C., Cheng, X., Qiu, J., et al., 2020, ApJ 889, 129




Project 4. Coronal Shocks and Solar Radio Bursts

As CMEs erupt upward, coronal shocks may form at the front of the CMEs, generaging metric type II radio bursts, a narrow-band radio emission enhancement excited at the local plasma frequency. On the other hand, eletron beams, accelerated in the reconnection region, produce type III radio bursts simultaneously. At present, the questions of how coronal shocks are formed, what properties do they have, and what conditions do they need to generate type II/III radio emissions remain.  This project involves various ground-based solar radio observatories such as MUSER and space-based missions. The figure on the right represents a coronal shock wave driven by the erupting CME. The outermost bright front indicates the shock front, followed by a bright sheath region.

Publications:

Cheng, X., Zhang, J., Olmedo, O., et al., 2012, ApJL 745, L5
Su, W., Cheng, X., Ding, M. D., et al., 2015, 
ApJ 804, 88
Su, W., Cheng, X., Ding, M. D., et al., 2016, 
ApJ 830, 70
Wan, L., Cheng, X., Shi, T., Su, W., Ding, M. D., 2016, 
ApJ 826, 174

Kou, Y. K., Jing, Z. C., Cheng, X., et al. 2020, ApJL, 898, 24

Flare_Type3_CME_list



Project 5. Predicting Space Weather

After experiencing a propagation phase of 1-3 days, CMEs may arrive at the Earth and take the from of magnetic clounds with the features of rotation of magnetic field, increased solar wind speed, depressed proton temperature, and low plasma beta. Due to the interaction with the magnetosphere and ionosphere, geomagnetic stroms probably take place, seriously impacting on the safety of high-tech activities in outer space, such as disrupting communications, presenting a hazard to astronauts and so on. In this project, the aim is to predict arrival time of CMEs taking advantage of kinematical models and initial parameters. The figure on the right shows a cartoon of a magnetic cloud interacting with the magnetosphere.

Publications:

Shi, T., Wang, Y., Wan, L., Cheng, X., Ding, M., Zhang, J., 2015, ApJ 806, 271



Current Group Members

Post-Doc:

Yulei Wang   (王雨雷)    2020

Jun Chen      (陈    俊)    2021

PhD Students:

Bitao Wang    (王碧涛)  2021

YuanKun Kou (寇元坤)  2021

Zhuofei Li       (李卓霏) 2020

Haitang Li      (李海堂)  2020

Chen Xing      (邢   晨)  2018

Master Students:

Ziwen Huang (黄紫雯)  2018


Previous Visitors:

Zhenjun Zhou (2018, Research Associate in Sun Yat-sen Univeristy)

Lijuan Liu (2018, Research Associate in Sun Yat-sen Univeristy)

Previous Students:

Wei Su (2012, Co-supervisor, Graduated in 2015, Postdoc in HUST)

Jianqing Sun (2012, Co-supervisor, Graduated in 2017, Research Scientist in Philips)

Linfeng Wan (2015, Graduated in 2018, PhD student in UCSC)


学术发表文章

Full Publications: ADS or Google Scholar

Selected Publications:

10. Xing, C., Cheng, X.* & Ding, M. D., The Evolution of the Toroidal Flux of CME Flux Ropes During Eruption, The Innovation 2020, 3, 100059

9. Cheng, X.*; Zhang, J.; Kliem, B.; Torok, T.; Xing, C.; Zhou, Z. J.; Inhester, B.; Ding, M. D., Initiation and Early Kinematic Evolution of Solar Eruptions, ApJ 2020, 894, 85

8. Cheng, X.*; Li, Y.; Wan, L. F.; Ding, M. D.; Chen, P. F.; Zhang, J.; Liu, J. J., Observations of Turbulent Magnetic Reconnection within a Solar Current Sheet, ApJ 2018, 866, 64.

7. Cheng, X.*; Ding, M. D.; Fang, C., Imaging and Spectroscopic Diagnostics on the Formation of Two Magnetic Flux Ropes Revealed by SDO/AIA and IRIS. ApJ 2015, 804, 82.

6. Sun, J. Q.; Cheng, X.*; Ding, M. D.; Guo, Y.; Priest, E. R.; Parnell, C. E.; Edwards, S. J.; Zhang, J.; Chen, P. F.; Fang, C., Extreme ultraviolet imaging of three-dimensional magnetic reconnection in a solar eruption. Nature Communications 2015, 6, 7598.

5. Cheng, X.*; Ding, M. D.; Zhang, J.; Sun, X. D.; Guo, Y.; Wang, Y. M.; Kliem, B.; Deng, Y. Y., Formation of a Double-decker Magnetic Flux Rope in the Sigmoidal Solar Active Region 11520.ApJ 2014, 789, 93.

4. Cheng, X.*; Zhang, J.; Ding, M. D.; Liu, Y.; Poomvises, W., The Driver of Coronal Mass Ejections in the Low Corona: A Flux Rope. ApJ 2013, 763, 43.

3. Zhang, J.; Cheng, X.; Ding, M. D., Observation of an evolving magnetic flux rope before and during a solar eruption. Nature Communications 2012, 3, 747.

2. Cheng, X.; Zhang, J.; Saar, S. H.; Ding, M. D., Differential Emission Measure Analysis of Multiple Structural Components of Coronal Mass Ejections in the Inner Corona. ApJ 2012, 761, 62.

1. Cheng, X.; Zhang, J.; Liu, Y.; Ding, M. D., Observing Flux Rope Formation During the Impulsive Phase of a Solar Eruption. ApJL 2011, 732, 25.