报告摘要:The most violent solar plasma process to study is the solar flare, which represents the most energetic explosion in our heliosphere. It involves a dramatic change - or reconnection - in the magnetic topology of the atmosphere, and the so-called "standard solar flare model" collects all observationally established info on flares in a cartoon. This cartoon emphasizes that macroscopic (magnetohydrodynamic) and microscopic (energetic particles) plasma physical processes dynamically interact, although most - if not all - model efforts only simulate the large magnetohydrodynamic (MHD) or the small (kinetic) scales. I will present our first self-consistent model of a standard solar flare [1], where electron beam physics dynamically couples to a largescale, multi-dimensional magnetohydrodynamic evolution of a flaring arcade. By varying the magnetic field strength, we explore the various flare classes, and we can compare with 1D flare models to point out the multi-dimensional aspects they lack. In [2], we continued simulating the hour-long postflare behaviour, to ensure that the hot meets the cold: the first numerical demonstration of postflare coronal rain due to thermal instability! I will show some recent results on 3D standard flare modeling, where we obtained [3] Kelvin-Helmholtz induced turbulent looptops consistent with observed non-thermal broadenings, and where we find clear multi-phase behaviour in the gradual phase. All simulation efforts use our open-source MPI-AMRVAC simulation toolkit [4], where grid-adaptivity is essential to zoom in on details that can be resolved by future observing facilities.
[1] W. Ruan et al., 2020, ApJ 896, 97 (18pp) doi:10.3847/1538-4357/ab93db
[2] W. Ruan et al., 2021, ApJ Letter 920, L15 (8pp) doi:10.3847/2041-8213/ac27b0
[3] W. Ruan et al. 2023, ApJ 947, 67 (10pp) doi:10.3847/1538-4357/ac9b4e
[4] amrvac.org
Keppens et al., 2012, JCP 231, 718; Porth et al., 2014, ApJS 214, 4; Xia et al., 2018, ApJS 234, 30; Keppens et
al, 2021, CAMWA 81, 316, Keppens et al., 2023, A&A 673, A66 doi:10.1051/0004-6361/202245359
[5] https://erc-
报告人简介:Rony Keppens,比利时鲁汶大学教授。主要研究领域是计算天体物理,领导开发了国际领先的磁流体力学模拟程序MPI-AMRVAC,在这一领域发表300余篇期刊论文,同时是两本磁流体力学专著的合著者。MPI-AMRVAC程序应用领域广泛,包含流体、磁流体以及狭义相对论磁流体,具有自适应网格和大规模并行计算的能力,它的广义相对论版本已经应用到宇宙学模拟。
学术报告

报告题目:Progress in Solar Flare Modeling
报 告 人:Rony Keppens (比利时鲁汶大学)
报告时间:2023-08-29 09:30:00
报告地点:天文楼402会议室