Bin-Bin Zhang
|
Professor
Contact: Email: bbzhang_at_nju.edu.cn
Personal introduction Biography
<span style="font-size: 16px;"><span style="color: rgb(0, 0, 0); font-family: arial, helvetica, sans-serif; font-size: 16px;">Title of the document</span></span>

Short BIO: 

Professor Binbin Zhang earned his Ph.D. from the University of Nevada, Las Vegas. Following that, he held three Postdoctoral positions at Penn State, the University of Alabama in Huntsville, and the Institute of Astrophysics of Andalusia in Spain before relocating to Nanjing University. 

Prof. Zhang's primary research interests revolve around high-energy astrophysics and data-oriented research on Gamma-ray Bursts. Over the past decade, he has authored over 150 papers in astrophysical journals, including several in prestigious publications like Nature and Science. His work has garnered more than 12,000 citations, with an H-index of 51.



Recruiting:

I am currently accepting applications from postdocs, graduate students, and visitors. Undergraduates interested in early-career research projects are also welcome:

- For local students at NJU or Chinese citizens, please send me an email (bbzhang_at_nju.edu.cn) with any inquiries.

- If you are inquiring about a postdoc position, please send me an email first, ensuring that you include your CV and publication list.

- For international student opportunities, such as CSC funding applications, please read the following message carefully. Any communication using a non-institutional email addresses (such as Gmail or Yahoo) will be automatically ignored, which will void your future application.  To proceed, you must follow our panel review process. To initiate your application, please provide the following documents through your official email address (do not use Gmail or non-institutional email addresses):

  1. A copy of your passport.

  2. A cover letter.

  3. A detailed curriculum vitae (CV).

  4. A list of your publications.

  5. A research statement outlining your past research experiences and future research interests.

  6. Ensure you send a PDF copy of your transcripts, your most current thesis (such as your M.S. or B.S thesis), and diploma.

  7. Arrange for three letters of reference to be sent directly to Prof. Bin-Bin Zhang at bbzhang@nju.edu.cn from official institutional email addresses.

Once we receive your complete application package, we will thoroughly review it. I will not respond to any email inquiries without receiving your fully qualified package.   If your application aligns with our criteria, you will revceive a notification to schedule an interview. No notification means that you are unfortunately not selected.  



Recent News:


2024-02-08   A new study led by Ph.D. student Zhenyu Yan, titled “One Fits All: A Unified Synchrotron Model Explains GRBs with FRED-shape Pulses,” has been published in ApJ. The paper introduces a synchrotron model that simplifies the analysis of gamma-ray bursts (GRBs) by using a single set of parameters to explain their spectral and temporal evolution. This approach sheds light on the GRB light curve’s phases and peak energy changes, suggesting an expanding emission region as the underlying mechanism. The findings offer a fresh perspective on GRB analysis and could guide future astrophysical research. The full paper is available in the Astrophysical Journal at https://iopscience.iop.org/article/10.3847/1538-4357/ad14fb


2023-12-22  Our team conducted a study on the second extragalactic magnetar, Giant Glare GRB 231115A, and successfully applied the Comptonized Fireball Bubble model to the observed data. This study provides a constrained physical picture, including a trapped fireball with a radius of approximately 1.95e5 cm and a high local magnetic field of 2.5e16 G. The paper, led by our graduate student Iris, is now available on arXiv at https://arxiv.org/abs/2312.14833(Update on Feb 21, 2024: Our paper is now published in ApJL https://iopscience.iop.org/article/10.3847/2041-8213/ad2839 )


2023-12-10  Our paper, "A Long-Duration Gamma-Ray Burst with a Peculiar Origin" (Nature, 612, 232), was selected as one of the outstanding academic achievement papers in the "Jiangsu Natural Science Top 100 Papers" for 2023. Official news confirming this selection can be found at: https://www.jiangsu.gov.cn/art/2023/12/10/art_89419_11094450.html (which mentions our paper). Additionally, the news is covered by NJU at: https://astronomy.nju.edu.cn/twdt/xwdt/20231208/i255625.html.


2023-12-06: Our research paper published at Nature, entitled 'A Long-Duration Gamma-Ray Burst with a Peculiar Origin,' has been distinguished as one of the Top Ten Technological Advances in the Fundamental Science Research Field in Jiangsu Province, China, for the year 2022. This recognition underscores the significance of our work and its contribution to advancing scientific outcome in the GRB field.  NJU news: https://astronomy.nju.edu.cn/twdt/xwdt/20231205/i255463.html 


2023-09-01: A research paper exploring the utilization of Gravitational Waves to discern the origins of certain peculiar Gamma-Ray Bursts (e.g., GRB 211211A) has been recently published in the Astrophysical Journal Letters. You can access the article at the following link: https://iopscience.iop.org/article/10.3847/2041-8213/acf04a/pdf. Additionally, a news report in Chinese titled "利用引力波信号探究特殊伽马射线暴的致密星并合起源" is also available at: https://astronomy.nju.edu.cn/twdt/cggs/20230922/i250987.html.  The first author of this study is my graduate student, Yi-Han Iris Yin.


2023-08-20: We are orgnizing the The 3rd Nanjing GRB Conference in May 2024. Since the 2nd Nanjing GRB conference held in 2019, significant strides have been made in the field of Gamma-Ray Bursts. The detection of several distinctive GRBs, including the unprecedented "Brightest of All Time" GRB 221009A, has been continuously driving this vigorous field. In May 2024, we will gather once again in the beautiful city of Suzhou with the aim of summarizing and discussing the recent progress, both in the fronts of new observations and theoretical modeling. It will also highlight the initiatives and the results of some existing, newly launched or anticipated space/groundbased missions/telescopes, with a strong focus on their connections to multi-messenger astrophysics. For details of the conference please check http://grb2024.org/

2023-07-24: Collaborating with the EP and GECAM teams, our research group has jointly conducted a study that unveils the emergence of a magnetar during an long-duration and luminous GRB 230307A event. You can find more details about the study here.:  https://www.researchsquare.com/article/rs-3192773/v1   (under review).

2023-03-28. Our team led a study on the brightest-of-all-time (BOAT) GRB 221009A. We proposed a physical synchrotron model to account for its MeV radiation. Our paper has been published in ApJ Letters and can be accessed at https://iopscience.iop.org/article/10.3847/2041-8213/acc84b  . Additionally, our team presented a poster at the AAS/HEAD20 meeting.


 

2022-12-07. In the Dec. 7 issue of the journal Nature, our team reports the discovery of a unique cosmological gamma-ray burst (GRB) that defies prevailing theories of how violent cosmic explosions form. This “oddball” burst led the team to propose a new model, or source, for certain types of GRBs. My student Jun Yang is the first author of the paper.  The link is here:  https://www.nature.com/articles/s41586-022-05403-8 .  Here are some highlighted pictures, media reports of our research:


The Paper: 

"A long-duration gamma-ray burst with a peculiar origin" 

 https://www.nature.com/articles/s41586-022-05403-8

Media reports:


Nature Research Hghlights:  ‘Oddball’ gamma ray burst challenges models of origins
Nature News and Views:    
Strange flashes linked to stars merging rather than dying

NJU Astro News: Astronomers at Nanjing University propose a new origin for a peculiar gamma-ray burst

Sky & Telescope: Gamma-Ray Burst Suprise 

CNN News:  Rare cosmic collision acted like one of the ‘factories of gold’ in the universe  
UNLV News:  Deep-Space Discovery: Oddball Gamma-Ray Burst Forces Revision of Theoretical Framework 
New Scientist:   A weird gamma ray burst doesn't fit our understanding of the cosmos
Sky & Telescope: Gamma-Ray Burst Suprise 

NJU News (Chinese):南大天文博士生《自然》发文提出伽马射线暴起源新模型

Take Courses Teaching


《Gravitational Wave and Related Astrophysics》(2019-present)
This is a self-designed course focused on the theoretical study of gravitational wave events and gamma-ray bursts. The class is open to all senior undergraduates, graduate students, and international students at NJU. From scratch, I designed the syllabus, the lesson plans, the lectures, slides, handouts, and the homework. The course has been taught in four semesters since 2018. Approximately 30 students are enrolled each year.

《CubeSat Development and Scientific Research for Gravitational Wave Electromagnetic Counterparts》 (2019-2021)
It is an innovative R&D course within the framework of the GRID and related student-oriented research projects. This class is organized as a weekly workshop to develop the GRID detector for GRBs. It is open to all undergraduate students at NJU, regardless of their major. As of 2019, I have taught the course three times. Each semester there were approximately 20 students involved in the project, who were majoring in fields including astronomy, electronics engineering, computer science, and physics. The class resulted in the development of a 0.5-U detector, which was already sent into production and is scheduled for launch in Jan 2023.


Research Field Research Interests

My primary research interests include Gamma-ray Bursts (GRBs), Fast-Radio Bursts (FRBs), Gravitational-wave (GW) events, and other related high-energy astrophysical transients. As a researcher over the past fifteen years, which spans from my first year in graduate school until my current role at Nanjing University (NJU) as an associate professor, I have witnessed the growth of multimessenger astronomy fueled by the discoveries of Swift, Fermi, and aLIGO/Virgo and have undertaken several related research projects that have contributed significantly to our understanding of these phenomena.

My research has led to a total of 138 publications in refereed journals, 37 as first author or corresponding author, of which three in Nature Astronomy and one in Nature Communication, with a total number of over 9800 citations and an H-index of 45. I have also been awarded a variety of national research grants in the last five years, totaling over 7.9M CNY. I have organized several conferences and workshops, for instance a highly successful inter- national conference in Nanjing in 2019 with a theme of “Gamma-Ray Burst and Related Astrophysics in the Multi-Messenger Era”, that had the explicit purpose of bringing GW and GRB scientists together. I am a key member of several international collaborations, such as  the  FAST-FRB Key  Project,  LHASSO,  and  SKA-China.   I am currently the supervisor of four Ph.D. students, four master students, and one postdoctoral fellow.

On the instrumental side, I have been leading the effort of building a CubeSat network project, which is named Gamma Ray Integrated Detectors (GRID [1]) at NJU. Ultimately, the project aims to establish a network of ten to twenty CubeSats, each one equipped with a 0.5-U size GRB detector. To date, we have launched three test missions, discovered a dozen GRBs, and published a paper [2] in ApJ on the first GRB discovered by GRID, 210121A.

Progenitors and central engines of gamma-ray bursts 

Research on progenitors and central engines seeks to reveal what types of astrophysical objects, at the end of their stellar evolution paths, can give birth to GRBs, as well as what type of the consequent central systems can serve as the energy source to power GRBs up to a luminosity of 1052 erg s−1. Over the past decades, the standard fireball framework, which involves a central engine consisting of a central compact object, an accretion disk, and a relativistic jjet, resulted from a massive star collapse or compact binary merger, has been a big success in interpreting most of the observed features of GRBs. Yet, the enriched data from my projects suggest a diversity of GRB populations with distinctive progenitors and central engines. In this context, I’d like to highlight my following recent projects:

  • Magentar giant flare  (MGF) as a new origin of short  GRBs.   The giant flares of soft gamma-ray repeaters (SGRs) have long been proposed to contribute to at least a subsample of the observed short GRBs.   Based on our comprehensive analysis of the Fermi/GBM data, we found that a magnetar giant flare offers the most natural explanation for cosmological GRB 200415A in terms of location, temporal and spectral features, energy, statistical correlations, as well as high-energy emission. As the first study on the burst published in ApJ, ours findings firmly established that young magnetars, unlike other cataclysmic processes, can produce at least a partition of short GRB populations. Furthermore, our follow-up study  further reported a identification of a GRB as a hyper flare of a weeks-old magnetar in a nearby galaxy. Our finding bridges the gap between the hypothetical millisecond magnetars and the ob- served Galactic magnetars, and points toward a broader channel of magnetar-powered gamma-ray transients.

  • A peculiarly short-duration not originated from compact binary merger. Gamma-ray bursts have been phenomenologically classified into long and short populations based on the observed bimodal distribution of duration. It has been known that the duration criterion is sometimes unreliable, and multi-wavelength criteria are needed to identify the physical origin of a particular GRB. Our comprehensive analysis of the multi-wavelength data of the short, bright GRB 200826A [5] suggests that it is characterized by a sharp pulse with a duration of 1 second and no evidence of an underlying longer-duration event. Its other observational properties such as its spectral behaviours, total energy and host galaxy offset are, however, inconsistent with those of other short GRBs believed to originate from binary neutron star mergers. Rather, these properties resemble those of long GRBs. This burst confirms the existence of short-duration GRBs with alternative origins other that BNS merger, and presents some challenges to the existing models.

  • A long-duration gamma-ray burst with a merger origin.  In 2022, we report a peculiar long-duration gamma-ray burst, GRB 211211A, whose prompt emission properties in many aspects differ from all known Type-I GRBs, yet its multi-band observations suggest a non-massive-star origin. In particular, significant excess emission in both optical and near-infrared wavelengths has been discovered, which resembles kilonova emission as observed in some Type-I GRBs. These observations point towards a new progenitor type of GRBs. A scenario invoking a white dwarf-neutron star merger with a post-merger magnetar engine provides a self-consistent interpretation for all the observations, including prompt gamma-rays, early X-ray afterglow, as well as the engine-fed kilonova emission.

Unveil the physical nature of the GRB spectra

As part of my long-term goal, I have been exploring the underlying radiation mechanism of GRBs and developing first-principle models that can describe the observed spectra of GRBs. This mission, by its nature,  is twofold as follows.  (1).Comprehensive  understanding of the observed data. A GRB’s observed count spectrum is recorded by Gamma-ray detectors on space missions in response to the incident photon flux from the astrophysical object.  An initial step ought to be to study such data in a statistical manner.  For example, in 2011, I led a project [9] which performed a systematic analysis of the spectral and temporal properties of 17 GRBs co-detected by the Gamma-ray Burst Monitor (GBM) and the Large Area Telescope (LAT) onboard the Fermi. We performed a time-resolved spectral analysis of all the bursts, with the finest temporal resolution allowed by statistics, to reduce the temporal smearing of different spectral components. By performing the fit using empirical spectral models, we speculate that, phenomenologically, three elemental spectral components shape the time-resolved GRB spectra. (2).Developing physical radiation models and applying them to the data. Over the past few years, we have proposed several physical models that successfully fit the observations, e.g.:

  • A modified fast-cooling synchrotron radiation model, which considers the magnetic field strength in the emission region decaying with time . We successfully fit such a model to the time-resolved spectra of GRB 1300606B;

  • A photospheric model from a structured jet. Such a model naturally produces a multi- color black body spectrum. An off-axis version of this model can reproduce a low-energy photon index that is softer than a blackbody through enhancing high-latitude emission and can naturally account for the observed spectrum of the gravitational wave GRB 170817A .

  • A transition from fireball to Poynting-flux-dominated outflow in the three-episode GRB 160625B.  By conducting detailed time-resolved spectral analysis in each episode of the multi-episode GRB 160625B, we found that the the spectral properties of the first two sub-bursts are distinctly different, allowing us to observe the transition from thermal to non-thermal radiation between well-separated emission episodes within a single GRB. Such a transition is a clear indication of the change of jet composition from a fireball to a Poynting-flux-dominated jet.

It is worth noting that the above applications are made possible by my own software, McSpecFit, which is a general-purpose forward-folding code that can handle instrument responses from any mission (e.g., Fermi/GBM), read in any model spectrum regardless of its form, calculate the model-predicted count spectrum, and perform a Monte-Carlo Bayesian fit.

Development of Gamma-ray detectors of a GRB Cube-Sat mission

Since 2018, I, together with my colleagues at Tsinghua University, have been leading a team of graduate and undergraduate students to design and develop small high-energy photon detectors used in CubeSat. Named Gamma-Ray Integrated Detectors (GRID), the mission is a student-dominated project designed to use multiple gamma-ray detectors carried by nanosatellites, forming a full-time all-sky one gamma-ray detection network that monitors the transient gamma-ray sky in the multi-messenger astronomy era. A compact CubeSat gamma-ray detector, including its hardware and firmware, was designed and implemented for the mission. The detector employs four Gd2Al2Ga3O12 : Ce (GAGG:Ce) scintillators coupled with four silicon photomultiplier (SiPM) arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions. We have successfully launched three testing missions and detected dozens of GRBs to date. In particular, two improved versions developed by our NJU team have been scheduled to be launched in Jan 2023 and early 2024. Figure 1 shows the current detector design as well as the first GRID-detected GRB 210121A .

Academic publications Publications

An up-to-date publication list on ADS is available on this link.

Highlighted Papers:

Yang, J., Ai, S.-K, Zhang, B.-B. et al,   A long-duration gamma-ray burst with a peculiar origin, 2022, Nature, https://www.nature.com/articles/s41586-022-05403-8

Zhang, B. -B. , Liu, Z. -K. , Peng, Z. -K. et al., A peculiarly short-duration gamma-ray burst from massive star core-collapse, 2021, Nature Astronomy, https://www.nature.com/articles/s41550-021-01395-z

Zhang, B-.B., Zhang, B., Sun, H.,et al.. , A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor, 2018, Nature Communications, 9, 447 1/2018 10.1038/s41467-018-02847-3

Zhang, B-.B., Zhang, B., Castro-Tirado, et al. , Transition from fireball to Poynting-flux- dominated outflow in the three-episode GRB 160625B, 2018, Nature Astronomy, 2, 69 11/2018 10.1038/s41550-017-0309-8

Zhang, B-.B., & Zhang, B. , Repeating FRB 121102: Eight-year Fermi-LAT Upper Limits and Implications, 2017, The Astrophysical Journal, 843, L13 7/2017 10.3847/2041-8213/aa7633

Zhang, B-.B., et al., Synchrotron Origin of the Typical GRB Band Function: A Case Study of GRB 130606B, 2016, The Astrophysical Journal, 816, 72 1/2016 10.3847/0004-637X/816/2/72

Zhang, B-.B., Zhang, B., & Castro-Tirado, A. J. , Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters, 2016, The Astrophysical Journal, 820, L32 4/2016 10.3847/2041- 8205/820/2/L32

Zhang, B-.B., Zhang, B., Murase, K., Connaughton, V., & Briggs, M. S. , How Long does a Burst Burst?, 2014, The Astrophysical Journal, 787, 66 5/2014 10.1088/0004-637X/787/1/66

Zhang, B-.B., van Eerten, H., Burrows, D. N., Ryan, G. S., Evans, P. A., Racusin, J. L., Troja, E., & MacFadyen, A. , An Analysis of Chandra Deep Follow-up Gamma-Ray Bursts: Implications for Off-axis Jets, 2015, The Astrophysical Journal, 806, 15 6/2015 10.1088/0004-637X/806/1/15

Zhang, B-.B.,et ql. , GRB 120422A: A Low-luminosity Gamma-Ray Burst Driven by a Central Engine, 2012, The Astrophysical Journal, 756, 190 9/2012 10.1088/0004-637X/756/2/190

Zhang, B-.B.,et al., Unusual Central Engine Activity in the Double Burst GRB 110709B, 2012, The Astrophysical Journal, 748, 132 4/2012 10.1088/0004-637X/748/2/132

Zhang, B-.B., Zhang, B., Liang, E.-W., Fan, Y.-Z., Wu, X.-F., Pe’er, A., Maxham, A., Gao, H., & Dong, Y.-M. , A Comprehensive Analysis of Fermi Gamma-ray Burst Data. I. Spectral Components and the Possible Physical Origins of LAT/GBM GRBs, 2011, The Astrophysical Journal, 730, 141 4/2011 10.1088/0004-637X/730/2/141

First-author, corresponding author & student-mentored papers:

37. Zhang, B.-B., Liu, Z.-K., Peng, Z.-K., Li, Y., Lü, H.-J., Yang, J., Yang, Y.-S., Yang, Y.-H., Meng, Y.-Z., Zou, J.-H., Ye, H.-Y., Wang, X.-G., Mao, J.-R., Zhao, X.-H., Bai, J.-M., Castro- Tirado, A. J., Hu, Y.-D., Dai, Z.-G., Liang, E.-W., Zhang, B., A peculiarly short-duration gamma-ray burst from massive star core collapse, 2021, Nature Astronomy, 5, 911, 07/2021, 10.1038/s41550-021-01395-z

36. Zhang, B-.B., Zhang, B., Sun, H., Lei, W.-H., Gao, H., Li, Y., Shao, L., Zhao, Y., Hu, Y.-D., Lü, H.-J., Wu, X.-F., Fan, X.-L., Wang, G., Castro-Tirado, A. J., Zhang, S., Yu, B.-Y., Cao, Y.-Y., & Liang, E.-W. , A peculiar low-luminosity short gamma-ray burst from a double neutron star merger progenitor, 2018, Nature Communications, 9, 447 1/2018 10.1038/s41467-018-02847-3

35. Zhang, B-.B., Zhang, B., Castro-Tirado, et al. , Transition from fireball to Poynting-flux- dominated outflow in the three-episode GRB 160625B, 2018, Nature Astronomy, 2, 69 11/2018 10.1038/s41550-017-0309-8

34. Zhang,B-.B., & Zhang, B. , Repeating FRB 121102: Eight-year Fermi-LAT Upper Limits and Implications, 2017, The Astrophysical Journal, 843, L13 7/2017 10.3847/2041-8213/aa7633

33. Zhang,B-.B., Uhm, Z. L., Connaughton, V., Briggs, M. S., & Zhang, B. , Synchrotron Origin of the Typical GRB Band Function: A Case Study of GRB 130606B, 2016, The Astrophysical Journal, 816, 72 1/2016 10.3847/0004-637X/816/2/72

32. Zhang, B-.B., Zhang, B., & Castro-Tirado, A. J. , Central Engine Memory of Gamma-Ray Bursts and Soft Gamma-Ray Repeaters, 2016, The Astrophysical Journal, 820, L32 4/2016 10.3847/2041-8205/820/2/L32

31. Zhang,B-.B., Zhang, B., Murase, K., Connaughton, V., & Briggs, M. S. , How Long does a Burst Burst?, 2014, The Astrophysical Journal, 787, 66 5/2014 10.1088/0004-637X/787/1/66

30. Zhang, B-.B., van Eerten, H., Burrows, D. N., Ryan, G. S., Evans, P. A., Racusin, J. L., Troja, E., & MacFadyen, A. , An Analysis of Chandra Deep Follow-up Gamma-Ray Bursts: Implications for Off-axis Jets, 2015, The Astrophysical Journal, 806, 15 6/2015 10.1088/0004-637X/806/1/15

29. Zhang,B-.B., Fan, Y.-Z., Shen, R.-F., Xu, D., Zhang, F.-W., Wei, D.-M., Burrows, D. N., Zhang, B., & Gehrels, N. , GRB 120422A: A Low-luminosity Gamma-Ray Burst Driven by a Central Engine, 2012, The Astrophysical Journal, 756, 190 9/2012 10.1088/0004-637X/756/2/190

28. Zhang,B-.B., Burrows, D. N., Zhang, B., Mészáros, P., Wang, X.-Y., Stratta, G., D’Elia, V., Frederiks, D., Golenetskii, S., Cummings, J. R., Norris, J. P., Falcone, A. D., Barthelmy, S. D., & Gehrels, N. , Unusual Central Engine Activity in the Double Burst GRB 110709B, 2012, The Astrophysical Journal, 748, 132 4/2012 10.1088/0004-637X/748/2/132

27. Zhang, B-.B., Zhang, B., Liang, E.-W., Fan, Y.-Z., Wu, X.-F., Pe’er, A., Maxham, A., Gao, H., & Dong, Y.-M. , A Comprehensive Analysis of Fermi Gamma-ray Burst Data. I. Spectral Components and the Possible Physical Origins of LAT/GBM GRBs, 2011, The Astrophysical Journal, 730, 141 4/2011 10.1088/0004-637X/730/2/141

26. Zhang, B-.B., Zhang, B., Liang, E.-W., & Wang, X.-Y. , Curvature Effect of a Non-Power-Law Spectrum and Spectral Evolution of GRB X-Ray Tails, 2009, The Astrophysical Journal, 690, L10 1/2009 10.1088/0004-637X/690/1/L10

25. Zhang, B-.B., Liang, E.-W., & Zhang, B. , A Comprehensive Analysis of Swift XRT Data. I. Apparent Spectral Evolution of Gamma-Ray Burst X-Ray Tails, 2007, The Astrophysical Journal, 666, 1002 9/2007 10.1086/519548

24. Zou, J.-H., Zhang, B.-B., Zhang, G.-Q., Yang, Y.-H., Shao, L., Wang, F.-Y., Periodicity Search on X-Ray Bursts of SGR J1935+2154 Using 8.5 yr of Fermi/GBM Data, 2021, The Astrophysical Journal, 923, L30, 12/2021, 10.3847/2041-8213/ac3759

23. Wang, X. I., Zheng, X., Xiao, S., Yang, J., Liu, Z.-K., Yang, Y.-H., Zou, J.-H., Zhang,B.-B., Zeng, M., Xiong, S.-L., Feng, H., Song, X.-Y., Wen, J., Xu, D., Chen, G.-Y., Ni, Y., Zhang, Z.-J., Wu, Y.-X., Cai, C., Cang, J., Deng, Y.-W., Gao, H., Kong, D.-F., Huang, Y., et al., GRB 210121A: A Typical Fireball Burst Detected by Two Small Missions, 2021, The Astrophysical Journal, 922, 237, 12/2021, 10.3847/1538-4357/ac29bd

22. Zou, Z.-C., Zhang,B.-B., Huang, Y.-F., Zhao, X.-H., Gamma-Ray Burst in a Binary System, 2021, The Astrophysical Journal, 921, 2, 11/2021, 10.3847/1538-4357/ac1b2d

21. Zhang, Z. J., Zhang, B.-B., Meng, Y.-Z., A Comptonized Fireball Bubble: Physical Origin of Magnetar Giant Flares, 2021, arXiv e-prints, arXiv:2109.14252, 09/2021

20. Peng, Z.-K., Liu, Z.-K., Zhang, B.-B., GRB 200826A: Collapse of a Thorne-Zytkow-like Object as the Aftermath of a WD-NS Coalescence, 2021, arXiv e-prints, arXiv:2109.06041, 09/2021,

19. Yang, Y.-H.,Zhang, B.-B., Lin, L., Zhang, B., Zhang, G.-Q., Yang, Y.-S., Tu, Z.-L., Zou, J.-H., Ye, H.-Y., Wang, F.-Y., Dai, Z.-G., Bursts before Burst: A Comparative Study on FRB 200428-associated and FRB-absent X-Ray Bursts from SGR J1935+2154, 2021, The Astrophysical Journal, 906, L12, 01/2021, 10.3847/2041-8213/abd02a

18. Yang, J., Chand, V., Zhang,B.-B., Yang, Y.-H., Zou, J.-H., Yang, Y.-S., Zhao, X.-H., Shao, L., Xiong, S.-L., Luo, Q., Li, X.-B., Xiao, S., Li, C.-K., Liu, C.-Z., Joshi, J. C., Sharma, V., Chakraborty, M., Li, Y., Zhang, B., GRB 200415A: A Short Gamma-Ray Burst from a Magnetar Giant Flare?, 2020, The Astrophysical Journal, 899, 106, 08/2020, 10.3847/1538-4357/aba745

17. Yang, Y.-S., Zhong, S.-Q., Zhang,B.-B., Wu, S., Zhang, B., Yang, Y.-H., Cao, Z., Gao, H., Zou, J.-H., Wang, J.-S., Lü, H.-J., Cang, J.-R., Dai, Z.-G., Physical Implications of the Subthreshold GRB GBM-190816 and Its Associated Subthreshold Gravitational-wave Event, 2020, The Astrophysical Journal, 899, 60, 08/2020, 10.3847/1538-4357/ab9ff5

16. Du, S.-S., Lan, L., Wei, J.-J., Zhou, Z.-M., Gao, H., Jiang, L.-Y., Zhang, B.-B., Liu, Z.-K., Wu, X.-F., Liang, E.-W., Zhu, Z.-H., Lorentz Invariance Violation Limits from the Spectral-lag Transition of GRB 190114C, 2021, The Astrophysical Journal, 906, 8, 01/2021, 10.3847/1538- 4357/abc624

15. Wang, D.-Z., Zhao, X.-H., Zhang, Z., Zhang, B.-B., Peng, Z.-Y., A Comprehensive Consistency Check between Synchrotron radiation and the Observed Gamma-ray Burst Spectra, 2022, ApJ in press, arXiv e-prints, arXiv:2107.09859, 07/2021,

14. Wang, J.-S., Peng, Z.-K., Zou, J.-H., Zhang, B.-B., Zhang, B., Stringent Search for Precursor Emission in Short GRBs from Fermi/GBM Data and Physical Implications, 2020, The Astrophysical Journal, 902, L42, 10/2020, 10.3847/2041-8213/abbfb8

13. Yang, Y.-H., Zhang, B-.B., & Zhang, B. , Second Repeating FRB 180814.J0422+73: Ten-year Fermi-LAT Upper Limits and Implications, 2019, The Astrophysical Journal, 875, L19 4/2019 10.3847/2041-8213/ab13af

12. Xiao, D., Zhang, B-.B., & Dai, Z.-G. , On the Properties of a Newborn Magnetar Powering the X-Ray Transient CDF-S XT2, 2019, The Astrophysical Journal, 879, L7 7/2019 10.3847/2041- 8213/ab2980

11. Lu, H.-J., Yuan, Y., Lan, L., Zhang,B.-B., Zou, J.-H., Peng, Z.-K., Shen, J., Liang, Y.- F., Wang, X.-G., Liang, E.-W., Evidence for Gravitational-wave-dominated Emission in the Central Engine of Short GRB 200219A, 2020, The Astrophysical Journal, 898, L6, 07/2020, 10.3847/2041-8213/aba1ed

10. Huang, Y., Luo, Q., Zhang, B.-B,, Xiong, S., Ultra-long gamma-ray bursts and ultra-soft gamma-ray bursts, 2020, Scientia Sinica Physica, Mechanica amp; Astronomica, 50, 129504, 12/2020, 10.1360/SSPMA-2019-0415

9. Wei, J.-J., Zhang, B-.B., Shao, L., et al., Multimessenger tests of Einstein’s weak equivalence principle and Lorentz invariance with a high-energy neutrino from a flaring blazar, 2019, Journal of High Energy Astrophysics, 22, 1 6/2019 10.1016/j.jheap.2019.01.002

8. Wei, J.-J., Zhang, B-.B., Wu, X.-F., Gao, H., Mészáros, P., Zhang, B., Dai, Z.-G., Zhang, S.-N., & Zhu, Z.-H. , Multimessenger tests of the weak equivalence principle from GW170817 and its electromagnetic counterparts, 2017, Journal of Cosmology and Astroparticle Physics, 11, 035 11/2017 10.1088/1475-7516/2017/11/035

7. Wei, J.-J., Zhang, B-.B., Shao, L., Wu, X.-F., & Mészáros, P. , A New Test of Lorentz Invariance Violation: The Spectral Lag Transition of GRB 160625B, 2017, The Astrophysical Journal, 834, L13 1/2017 10.3847/2041-8213/834/2/L13

6. Shao, L., Zhang, B-.B., Wang, F.-R., Wu, X.-F., Cheng, Y.-H., Zhang, X., Yu, B.-Y., Xi, B.-J., Wang, X., Feng, H.-X., Zhang, M., & Xu, D. , A New Measurement of the Spectral Lag of

Gamma-Ray Bursts and its Implications for Spectral Evolution Behaviors, 2017, The Astrophysical Journal, 844, 126 8/2017 10.3847/1538-4357/aa7d01

5. Chand, V., Banerjee, A., Gupta, R., Dimple, Pal, P. S., Joshi, J. C., Zhang,B.-B., Basak, R., Tam, P. H. T., Sharma, V., Pandey, S. B., Kumar, A., Yang, Y.-S., Peculiar Prompt Emission and Afterglow in the H.E.S.S.-detected GRB 190829A, 2020, The Astrophysical Journal, 898, 42, 07/2020, 10.3847/1538-4357/ab9606

4. Chand, V., Joshi, J. C., Gupta, R., Yang, Y.-H., Dimple, Sharma, V., Yang, J., Chakraborty, M., Zou, J.-H., Shao, L., Yang, Y.-S., Zhang,B.-B., Pandey, S. B., Banerjee, A., Moneer, E., Ep – Liso correlation and implications, 2021, Research in Astronomy and Astrophysics, 21, 236, 11/2021, 10.1088/1674-4527/21/9/236

3. Pandey, S. B., Hu, Y., Castro-Tirado, A. J., Pozanenko, A. S., Sánchez-Ramírez, R., Gorosabel, J., Guziy, S., Jelinek, M., Tello, J. C., Jeong, S., Oates, S. R., Zhang,B.-B., Mazaeva, E. D., Volnova, A. A., Minaev, P. Y., van Eerten, H. J., Caballero-García, M. D., Pérez-Ramírez, D., Bremer, M., Winters, J.-M., Park, I. H., Guelbenzu, A. N., Klose, S., Moskvitin, A., Sokolov,

V. V., Sonbas, E., Ayala, A., Cepa, J., Butler, N., Troja, E., Chernenko, A. M., Molkov, S. V., Volvach, A. E., Inasaridze, R. Y., Egamberdiyev, S. A., Burkhonov, O., Reva, I. V., Polyakov, K. A., Matkin, A. A., Ivanov, A. L., Molotov, I., Guver, T, et al. , A multiwavelength analysis of a collection of short-duration GRBs observed between 2012 and 2015, 2019, Monthly Notices of the Royal Astronomical Society, 485, 5294 6/2019 10.1093/mnras/stz530

2. Hou, S.-J., Zhang, B-.B., Meng, Y.-Z., Wu, X.-F., Liang, E.-W., Lü, H.-J., Liu, T., Liang, Y.-F., Lin, L., Lu, R.-j., Huang, J.-S., & Zhang, B. , Multicolor Blackbody Emission in GRB 081221, 2018, The Astrophysical Journal, 866, 13 10/2018 10.3847/1538-4357/aadc07

1. Wen, J. et al. , GRID: a Student Project to Monitor the Transient Gamma-Ray Sky in the Multi- Messenger Astronomy Era, 2019, Experimental Astronomy, 48, 77-79, 08/2019, 10.1007/s10686- 019-09636-w

Other Co-AuthorPapers

101. Lin, L., Zhang, C. F., Wang, P., Gao, H., Guan, X., Han, J. L., Jiang, J. C., Jiang, P., Lee, K. J., Li, D., Men, Y. P., Miao, C. C., Niu, C. H., Niu, J. R., Sun, C., Wang, B. J., Wang, Z. L., Xu, H., Xu, J. L., Xu, J. W., Yang, Y. H., Yang, Y. P., Yu, W., Zhang, B., Zhang,B.-B., Zhou, D. J., Zhu, W. W., Castro-Tirado, A. J., Dai, Z. G., Ge, M. Y., Hu, Y. D., Li, C. K., Li, Y., Li, Z., Liang, E. W., Jia, S. M., Querel, R., Shao, L., Wang, F. Y., Wang, X. G., Wu, X. F., Xiong, S. L., Xu, R. X., Yang, Y.-S., Zhang, G. Q., Zhang, S. N., Zheng, T. C., Zou, J.-H., No pulsed radio emission during a bursting phase of a Galactic magnetar, 2020, Nature, 587, 63, 11/2020, 10.1038/s41586-020-2839-y

100. Xue, Y. Q., Zheng, X. C., Li, Y., Brandt, W. N., Zhang, B., Luo, B., Zhang, B-.B., Bauer, F. E., Sun, H., Lehmer, B. D., Wu, X.-F., Yang, G., Kong, X., Li, J. Y., Sun, M. Y., Wang, J.-X., & Vito, F. , A magnetar-powered X-ray transient as the aftermath of a binary neutron-star merger, 2019, Nature, 568, 198 4/2019 10.1038/s41586-019-1079-5

99. Maselli, A., Melandri, A., Nava, L., Mundell, C. G., Kawai, N., Campana, S., Covino, S., Cummings,

J. R., Cusumano, G., Evans, P. A., Ghirlanda, G., Ghisellini, G., Guidorzi, C., Kobayashi, S.,

Kuin, P., La Parola, V., Mangano, V., Oates, S., Sakamoto, T., Serino, M., Virgili, F., Zhang,B.-B., Barthelmy, S., Beardmore, A., Bernardini, M. G., Bersier, D., Burrows, D., Calderone, G., Capalbi, M., Chiang, J., D’Avanzo, P., D’Elia, V., De Pasquale, M., Fugazza, D., Gehrels, N., Gomboc, A., Harrison, R., Hanayama, H., Japelj, J., Kennea, J., Kopac, D., Kouveliotou, C., Kuroda, D., Levan, A., Malesani, D., Marshall, F., Nousek, J., O’Brien, P., Osborne, J. P.,

Pagani, C., Page, K. L., Page, M., Perri, M., Pritchard, T., Romano, P., Saito, Y., Sbarufatti, B., Salvaterra, R., Steele, I., Tanvir, N., Vianello, G., Weigand, B., Wiersema, K., Yatsu, Y., Yoshii, T., & Tagliaferri, G. , GRB 130427A: A Nearby Ordinary Monster, 2014, Science, 343, 48 1/2014 10.1126/science.1242279

98. Castro-Tirado, A. J.,et al., Very-high-frequency oscillations in the main peak of a magnetar giant flare, 2021, Nature, 600, 621, 12/2021, 10.1038/s41586-021-04101-1

97. The LHAASO Collaboration, Cao, Z., et al.., Peta-electron volt gamma-ray emission from the Crab Nebula, 2021, Science, 373, 425, 07/2021, 10.1126/science.abg5137

96. The LHAASO Collaboration, Cao, Z., et al.., Ultrahigh-energy photons up to 1.4 petaelectronvolts from 12 -ray Galactic sources, 2021, Nature, 594, 33, 06/2021, 10.1038/s41586-021-03498-z

95. Jiang, L., Wang, S., Zhang, B., Kashikawa, N., Ho, L. C., Cai, Z., Egami, E., Walth, G., Yang, Y.-S., Zhang, B.-B., Zhao, H.-B., A possible bright ultraviolet flash from a galaxy at redshift z 11, 2021, Nature Astronomy, 5, 262, 01/2021, 10.1038/s41550-020-01266-z

94. Veres, P., Zhang, B-.B., & Mészáros, P. , The Extremely High Peak Energy of GRB 110721A in the Context of a Dissipative Photosphere Synchrotron Emission Model, 2012, The Astrophysical Journal, 761, L18 12/2012 10.1088/2041-8205/761/2/L18

93. Zhao, Y., Zhang, B-.B., Xiong, S.-L., Long, X., Zhang, Q., Song, L.-M., Sun, J.-C., Wang, Y.-H., Li, H.-C., Bu, Q.-C., Feng, M.-Z., Li, Z.-H., Wen, X., Wu, B.-B., Zhang, L.-Y., Zhang, Y.-J., Zhang, S.-N., & Shao, J.-X. , A low-latency pipeline for GRB light curve and spectrum using Fermi/GBM near real-time data, 2018, Research in Astronomy and Astrophysics, 18, 057 5/2018 10.1088/1674-4527/18/5/57

92. Zhao, L., Zhang, B-.B., Gao, H., Lan, L., Lü, H., & Zhang, B. , The shallow decay segment of GRB X-ray afterglow revisited, 2019, The Astrophysical Journal, 893,97, 09/2019 10.3847/1538- 4357/ab38c4

91. Veres, P., Zhang, B-.B., & Mészáros, P. , Magnetically and Baryonically Dominated Photospheric Gamma-Ray Burst Model Fits to Fermi-LAT Observations, 2013, The Astrophysical Journal, 764, 94 2/2013 10.1088/0004-637X/764/1/94

90. Fan, Y.-Z., Zhang, B-.B., Xu, D., Liang, E.-W., & Zhang, B. , XRF 100316D/SN 2010bh: Clue to the Diverse Origin of Nearby Supernova-associated Gamma-ray Bursts, 2011, The Astrophysical Journal, 726, 32 1/2011 10.1088/0004-637X/726/1/32

89. He, H.-N., Zhang, B-.B., Wang, X.-Y., Li, Z., & Mészáros, P. , Origin of the GeV Emission during the X-Ray Flaring Activity in GRB 100728A, 2012, The Astrophysical Journal, 753, 178 7/2012 10.1088/0004-637X/753/2/178

88. Gao, H., Zhang, B-.B., & Zhang, B. , Stepwise Filter Correlation Method and Evidence of Superposed Variability Components in Gamma-Ray Burst Prompt Emission Light Curves, 2012, The Astrophysical Journal, 748, 134 4/2012 10.1088/0004-637X/748/2/134

87. Maxham, A., Zhang, B-.B., & Zhang, B. , Is GeV emission from Gamma-Ray Bursts of external shock origin?, 2011, Monthly Notices of the Royal Astronomical Society, 415, 77 7/2011 10.1111/j.1365-2966.2011.18648.x

86. Zhang, B., Zhang, B-.B., Virgili, F. J., Liang, E.-W., Kann, D. A., Wu, X.-F., Proga, D., Lv, H.-J., Toma, K., Mészáros, P., Burrows, D. N., Roming, P. W. A., & Gehrels, N. , Discerning the Physical Origins of Cosmological Gamma-ray Bursts Based on Multiple Observational Criteria: The Cases of z = 6.7 GRB 080913, z = 8.2 GRB 090423, and Some Short/Hard GRBs, 2009, The Astrophysical Journal, 703, 1696 10/2009 10.1088/0004-637X/703/2/1696

85. Zhang, B., Zhang, B-.B., Liang, E.-W., Gehrels, N., Burrows, D. N., & Mészáros, P. , Making a Short Gamma-Ray Burst from a Long One: Implications for the Nature of GRB 060614, 2007, The Astrophysical Journal, 655, L25 1/2007 10.1086/511781

84. Liang, E.-W., Zhang,B-.B., & Zhang, B. , A Comprehensive Analysis of Swift XRT Data. II. Diverse Physical Origins of the Shallow Decay Segment, 2007, The Astrophysical Journal, 670, 565 11/2007 10.1086/521870

83. Liang, E.-W., Zhang,B-.B., Stamatikos, M., Zhang, B., Norris, J., Gehrels, N., Zhang, J., & Dai, Z. G. , Temporal Profiles and Spectral Lags of XRF 060218, 2006, The Astrophysical Journal, 653, L81 12/2006 10.1086/510516

82. Gupta, R., et al., Probing into emission mechanisms of GRB 190530A using time-resolved spectra and polarization studies: Synchrotron Origin?, 2022, Monthly Notices of the Royal Astronomical Society, 01/2022, 10.1093/mnras/stac015

81. Lin, S.-J., Li, A., Gao, H., Lin, L., Zhang,B.-B., Liu, Z.-K., Zou, J.-H., Zhang, Z., Zhou, H., Li, Z.-X., Lan, L., A Search for Millilensing Gamma-Ray Bursts in the Observations of Fermi GBM, 2021, arXiv e-prints, arXiv:2112.07288, 12/2021,

80. Gao, H., Yang, D., Wen, J., Zheng, X., Zeng, M., Cang, J., Zeng, W., Pan, X., Zhou, Q., Liu, Y., Feng, H., Zhang, B.-B., Zeng, Z., Tian, Y., GRID Collaboration, On-ground calibrations of the GRID-02 gamma-ray detector, 2021, Experimental Astronomy, 12/2021, 10.1007/s10686- 021-09819-4

79. Xu, H.,et al., A fast radio burst source at a complex magnetised site in a barred galaxy, 2021, Nature Submitted arXiv e-prints, arXiv:2111.11764, 11/2021,

78. Yang, X., Lü, H.-J., Yuan, H.-Y., Rice, J., Zhang, Z., Zhang, B.-B., Liang, E.-W., Evidence for Gravitational Lensing of GRB 200716C, 2021, The Astrophysical Journal, 921, L29, 11/2021, 10.3847/2041-8213/ac2f39

77. Cao, Z., et al., Discovery of the Ultrahigh-energy Gamma-Ray Source LHAASO J2108+5157, 2021, The Astrophysical Journal, 919, L22, 10/2021, 10.3847/2041-8213/ac2579

76. Aharonian, F., et al., Calibration of the air shower energy scale of the water and air Cherenkov tech- niques in the LHAASO experiment, 2021, Physical Review D, 104, 062007, 09/2021, 10.1103/Phys- RevD.104.062007

75. Gupta, R., et al., GRB 140102A: insight into prompt spectral evolution and early optical afterglow emission, 2021, Monthly Notices of the Royal Astronomical Society, 505, 4086, 08/2021, 10.1093/mnras/stab1573

74. Aharonian, F. et al., Construction and on-site performance of the LHAASO WFCTA camera, 2021, European Physical Journal C, 81, 657, 07/2021, 10.1140/epjc/s10052-021-09414-z

73. The LHAASO Collaboration, Exploring Lorentz Invariance Violation from Ultra-high-energy Gamma Rays Observed by LHAASO, 2021, arXiv e-prints, arXiv:2106.12350, 06/2021,

72. Aharonian, F.et al.., Extended Very-High-Energy Gamma-Ray Emission Surrounding PSR J 0622

+3749 Observed by LHAASO-KM2A, 2021, Physical Review Letters, 126, 241103, 06/2021, 10.1103/PhysRevLett.126.241103

71. Aharonian, F., et al., Performance test of the electromagnetic particle detectors for the LHAASO experiment, 2021, Nuclear Instruments and Methods in Physics Research A, 1001, 165193, 06/2021, 10.1016/j.nima.2021.165193

70. Wen, J.-X., Zheng, X.-T., Yu, J.-D., Che, Y.-P., Yang, D.-X., Gao, H.-Z., Jin, Y.-F., Long, X.-Y., Liu, Y.-H., Xu, D.-C., Zhang, Y.-C., Zeng, M., Tian, Y., Feng, H., Zeng, Z., Cang, J.-R., Wu, Q., Zhao, Z.-Q., Zhang, B.-B., An, P., GRID collaboration, Compact CubeSat Gamma-Ray Detector for GRID Mission, 2021, arXiv e-prints, arXiv:2104.14228, 04/2021,

69. Ma, S.-B., Xie, W., Liao, B., Zhang,B.-B., Lü, H.-J., Liu, Y., Lei, W.-H., A Possible Kilonova Powered by Magnetic Wind from a Newborn Black Hole, 2021, The Astrophysical Journal, 911, 97, 04/2021, 10.3847/1538-4357/abe71b

68. Lu, H.-J., Yuan, Y., Lan, L., Zhang, B.-B., Zou, J.-H., Liang, E.-W., The electromagnetic and gravitational-wave radiations of X-ray transient CDF-S XT2, 2021, Research in Astronomy and Astrophysics, 21, 047, 03/2021, 10.1088/1674-4527/21/2/47

67. Aharonian, F., et al., Observation of the Crab Nebula with LHAASO-KM2A – a performance study, 2021, Chinese Physics C, 45, 025002, 02/2021, 10.1088/1674-1137/abd01b

66. Hu, Y.-D.,et al., 10.4 m GTC observations of the nearby VHE-detected GRB 190829A/SN 2019oyw, 2021, Astronomy and Astrophysics, 646, A50, 02/2021, 10.1051/0004-6361/202039349

65. LHAASO collaboration, Performance of LHAASO-WCDA and Observation of Crab Nebula as a Standard Candle, 2021, arXiv e-prints, arXiv:2101.03508, 01/2021,

64. Pe’er, A., Zhang,B-.B., Ryde, F., McGlynn, S., Zhang, B., Preece, R. D., & Kouveliotou,

C. , The connection between thermal and non-thermal emission in gamma-ray bursts: general considerations and GRB 090902B as a case study, 2012, Monthly Notices of the Royal Astronomical Society, 420, 468 2/2012 10.1111/j.1365-2966.2011.20052.x

63. Kasliwal, M. M., et al., Kilonova Luminosity Function Constraints Based on Zwicky Transient Facility Searches for 13 Neutron Star Merger Triggers during O3, 2020, The Astrophysical Journal, 905, 145, 12/2020, 10.3847/1538-4357/abc335

62. Aharonian, F., et al., The observation of the Crab Nebula with LHAASO-KM2A for the performance study, 2020, arXiv e-prints, arXiv:2010.06205, 10/2020,

61. Cenko, S. B., Whitelock, P. A., Cadonati, L., Connaughton, V., Davies, R., Fender, R., Groot, P. J., Kasliwal, M. M., Murphy, T., Nissanke, S., Sesana, A., Yoshida, S., Zhang, B., International Coordination of Multi-Messenger Transient Observations in the 2020s and Beyond: Kavli-IAU White Paper, 2020, arXiv e-prints, arXiv:2007.05546, 07/2020,

60. Aharonian, F., et al., Prospects for a multi-TeV gamma-ray sky survey with the LHAASO water Cherenkov detector array, 2020, Chinese Physics C, 44, 065001, 06/2020, 10.1088/1674- 1137/44/6/065001

59. Kang, S.-J., Zhu, K., Feng, J., Wu, Q., Zhang, B.-B., Yin, Y., Wang, F.-F., Liu, Y., Zheng, T.-Y., An Empirical “High-confidence” Candidate Zone for Fermi BL Lacertae Objects, 2020, The Astrophysical Journal, 891, 87, 03/2020, 10.3847/1538-4357/ab722d

58. Sun, H., Li, Y., Zhang, B.-B., Zhang, B., Bauer, F. E., Xue, Y., Yuan, W., A Unified Binary Neutron Star Merger Magnetar Model for the Chandra X-Ray Transients CDF-S XT1 and XT2, 2019, The Astrophysical Journal, 886, 129, 12/2019, 10.3847/1538-4357/ab4bc7

57. Hu, Y.-D., Oates, S. R., Lipunov, V. M., Zhang, B.-B., Castro-Tirado, A. J., Jeong, S., Sánchez- Ramírez, R., Tello, J. C., Cunniffe, R., Gorbovskoy, E., Caballero-García, M. D., Pandey, S. B., Kornilov, V. G., Tyurina, N. V., Kuznetsov, A. S., Balanutsa, P. V., Gress, O. A., Gorbunov, I., Vlasenko, D. M., Vladimirov, V. V., Budnev, N. M., Balakin, F., Ershova, O., Krushinski, V. V., Gabovich, A. V., Yurkov, V. V., Gorosabel, J., Moskvitin, A. S., Burenin, R. A., Sokolov, V. V., Delgado, I., Guziy, S., Fernandez-García, E. J., Park, I. H., Multiwavelength observations of GRB 140629A. A long burst with an achromatic jet break in the optical and X-ray afterglow, 2019, Astronomy and Astrophysics, 632, A100, 12/2019, 10.1051/0004-6361/201834959

56. Fraija, N., et al. , Analysis and Modeling of the Multi-wavelength Observations of the Luminous GRB 190114C, 2019, The Astrophysical Journal, 879, L26 7/2019 10.3847/2041-8213/ab2ae4

55. Fraija, N., et al. , Modeling the observations of GRB 180720B: From radio to sub-TeV gamma-rays, 2019, The Astrophysical Journal, 885, 28, 11/2019, 10.3847/1538-4357/ab3e4b

54. Troja, E., et al. , The afterglow and kilonova of the short GRB 160821B, 2019, Monthly Notices of the Royal Astronomical Society, 489, 2104-2116, 10/2019, 10.1093/mnras/stz2255

53. Meng, Y.-Z., Liu, L.-D., Wei, J.-J., Wu, X.-F., & Zhang, B-.B. , The time-resolved spectra of photospheric emission from a structured jet for gamma-ray bursts, 2019, The Astrophysical Journal, 882, 26, 09/2019, 10.3847/1538-4357/ab30c7

52. Yuan, Z., Wang, J., Worrall, D. M., Zhang, B-.B., & Mao, J. , Determining the Core Radio Luminosity Function of Radio AGNs via Copula, 2018, The Astrophysical Journal Supplement Series, 239, 33 12/2018 10.3847/1538-4365/aaed3b

51. Xiao, D., Peng, Z.-k., Zhang, B-.B., & Dai, Z.-G. , Prompt Emission of Gamma-Ray Bursts from the Wind of Newborn Millisecond Magnetars: A Case Study of GRB 160804A, 2018, The Astrophysical Journal, 867, 52 11/2018 10.3847/1538-4357/aae52f

50. Sadovnichy, V. A., et al. , Prompt and Follow-up Multi-wavelength Observations of the GRB 161017A, 2018, The Astrophysical Journal, 861, 48 7/2018 10.3847/1538-4357/aac08e

49. Meng, Y.-Z., Geng, J.-J., Zhang, B-.B., Wei, J.-J., Xiao, D., Liu, L.-D., Gao, H., Wu, X.-F., Liang, E.-W., Huang, Y.-F., Dai, Z.-G., & Zhang, B. , The Origin of the Prompt Emission for Short GRB 170817A: Photosphere Emission or Synchrotron Emission?, 2018, The Astrophysical Journal, 860, 72 6/2018 10.3847/1538-4357/aac2d9

48. Zhang, Q., Lei, W. H., Zhang,B.-B., Chen, W., Xiong, S. L., & Song, L. M. , Search for the signatures of a new-born black hole from the collapse of a supra-massive millisecond magnetar in short GRB light curves, 2018, Monthly Notices of the Royal Astronomical Society, 475, 266 3/2018 10.1093/mnras/stx3229

47. Abbott, B. P., et al. , Multi-messenger Observations of a Binary Neutron Star Merger, 2017, The Astrophysical Journal, 848, L12 10/2017 10.3847/2041-8213/aa91c9

46. Fraija, N., Veres, P., Zhang,B.-B., Barniol Duran, R., Becerra, R. L., Zhang, B., Lee, W. H., Watson, A. M., Ordaz-Salazar, C., & Galvan-Gamez, A. , Theoretical Description of GRB 160625B with Wind-to-ISM Transition and Implications for a Magnetized Outflow, 2017, The Astrophysical Journal, 848, 15 10/2017 10.3847/1538-4357/aa8a72

 45. Gao, H., Ren, A.-B., Lei, W.-H., Zhang,B-.B., Lü, H.-J., & Li, Y. , A Further Study of the t _ Burst of GRBs: Rest-frame Properties, External Plateau Contributions, and Multiple Parameter Analysis, 2017, The Astrophysical Journal, 845, 51 8/2017 10.3847/1538-4357/aa7e30

44. Wei, J.-J., Wu, X.-F., Zhang, B-.B., Shao, L., Mészáros, P., & Kostelecký, V. A. , Constraining Anisotropic Lorentz Violation via the Spectral-lag Transition of GRB 160625B, 2017, The Astrophysical Journal, 842, 115 6/2017 10.3847/1538-4357/aa7630

43. Sánchez-Ramírez, et al. , GRB 110715A: the peculiar multiwavelength evolution of the first afterglow detected by ALMA, 2017, Monthly Notices of the Royal Astronomical Society, 464, 4624 2/2017 10.1093/mnras/stw2608

42. Racusin, J. L., et al. , Searching the Gamma-Ray Sky for Counterparts to Gravitational Wave Sources: /Fermi GBM and LAT Observations of LVT151012 and GW151226, 2017, The Astro- physical Journal, 835, 82 1/2017 10.3847/1538-4357/835/1/82

41. Abbott, B. P., et al. , Localization and Broadband Follow-up of the Gravitational-wave Transient GW150914, 2016, The Astrophysical Journal, 826, L13 7/2016 10.3847/2041-8205/826/1/L13

40. Connaughton, V., Burns, E., Goldstein, A., Blackburn, L., Briggs, M. S., Zhang,B-.B., Camp, J., Christensen, N., Hui, C. M., Jenke, P., Littenberg, T., McEnery, J. E., Racusin, J., Shawhan, P., Singer, L., Veitch, J., Wilson-Hodge, C. A., Bhat, P. N., Bissaldi, E., Cleveland, W., Fitzpatrick, G., Giles, M. M., Gibby, M. H., von Kienlin, A., Kippen, R. M., McBreen, S., Mailyan, B., Meegan,

C. A., Paciesas, W. S., Preece, R. D., Roberts, O. J., Sparke, L., Stanbro, M., Toelge, K., & Veres, P. , Fermi GBM Observations of LIGO Gravitational-wave Event GW150914, 2016, The Astrophysical Journal, 826, L6 7/2016 10.3847/2041-8205/826/1/L6

39. Narayana Bhat, et al. , The Third Fermi GBM Gamma-Ray Burst Catalog: The First Six Years, 2016, The Astrophysical Journal Supplement Series, 223, 28 4/2016 10.3847/0067-0049/223/2/28

38. Yu, H.-F. et al. , The Fermi GBM gamma-ray burst time-resolved spectral catalog: brightest bursts in the first four years, 2016, Astronomy and Astrophysics, 588, A135 4/2016 10.1051/0004- 6361/201527509

37. He, H.-N., Kusenko, A., Nagataki, S., Zhang,B-.B., Yang, R.-Z., & Fan, Y.-Z. , Monte Carlo Bayesian search for the plausible source of the Telescope Array hotspot, 2016, Physical Review D, 93, 043011 2/2016 10.1103/PhysRevD.93.043011

36. Burns, E., Connaughton, V., Zhang, B-.B., Lien, A., Briggs, M. S., Goldstein, A., Pelassa, V., & Troja, E. , Do the Fermi Gamma-Ray Burst Monitor and Swift Burst Alert Telescope see the Same Short Gamma-Ray Bursts?, 2016, The Astrophysical Journal, 818, 110 2/2016 10.3847/0004-637X/818/2/110

35. Li, L., Wu, X.-F., Huang, Y.-F., Wang, X.-G., Tang, Q.-W., Liang, Y.-F., Zhang, B-.B., Wang, Y., Geng, J.-J., Liang, E.-W., Wei, J.-Y., Zhang, B., & Ryde, F. , A Correlated Study of Optical and X-Ray Afterglows of GRBs, 2015, The Astrophysical Journal, 805, 13 5/2015 10.1088/0004-637X/805/1/13

34. Connaughton, V. et al. , Localization of Gamma-Ray Bursts Using the Fermi Gamma-Ray Burst Monitor, 2015, The Astrophysical Journal Supplement Series, 216, 32 2/2015 10.1088/0067- 0049/216/2/32

33. Ryan, G., van Eerten, H., MacFadyen, A., & Zhang, B-.B. , Gamma-Ray Bursts are Observed Off-axis, 2015, The Astrophysical Journal, 799, 3 1/2015 10.1088/0004-637X/799/1/3

32. Yu, H.-F., et al. , Synchrotron cooling in energetic gamma-ray bursts observed by the Fermi Gamma-Ray Burst Monitor, 2015, Astronomy and Astrophysics, 573, A81 1/2015 10.1051/0004- 6361/201424858

31. Evans, P. A., et al. , GRB 130925A: an ultralong gamma ray burst with a dust-echo afterglow, and implications for the origin of the ultralong GRBs, 2014, Monthly Notices of the Royal Astronomical Society, 444, 250 10/2014 10.1093/mnras/stu1459

30. Lü, H.-J., Zhang, B., Liang, E.-W., Zhang, B-.B., & Sakamoto, T. , The ‘amplitude’ parameter of gamma-ray bursts and its implications for GRB classification, 2014, Monthly Notices of the Royal Astronomical Society, 442, 1922 8/2014 10.1093/mnras/stu982

29. Burgess, J. M., et al. , An Observed Correlation between Thermal and Non-thermal Emis- sion in Gamma-Ray Bursts, 2014, The Astrophysical Journal, 784, L43 4/2014 10.1088/2041- 8205/784/2/L43

28. Zhao, X., Li, Z., Liu, X., Zhang, B-.B., Bai, J., & Mészáros, P. , Gamma-Ray Burst Spectrum with Decaying Magnetic Field, 2014, The Astrophysical Journal, 780, 12 1/2014 10.1088/0004- 637X/780/1/12

27. Grupe, D., Nousek, J. A., Veres, P., Zhang, B-.B., & Gehrels, N. , Evidence for New Relations between Gamma-Ray Burst Prompt and X-Ray Afterglow Emission from 9 Years of Swift, 2013, The Astrophysical Journal Supplement Series, 209, 20 12/2013 10.1088/0067-0049/209/2/20

26. Veres, P., Mészáros, P., & Zhang, B-.B. , Gamma-ray burst models with general dynamics and fits to Fermi LAT bursts, 2013, arXiv e-prints, arXiv:1309.0771 9/2013

25. Qin, Y., Liang, E.-W., Liang, Y.-F., Yi, S.-X., Lin, L., Zhang, B-.B., Zhang, J., Lü, H.-J., Lu, R.-J., Lü, L.-Z., & Zhang, B. , A Comprehensive Analysis of Fermi Gamma-Ray Burst Data. III.

Energy-dependent T 90 Distributions of GBM GRBs and Instrumental Selection Effect on Duration Classification, 2013, The Astrophysical Journal, 763, 15 1/2013 10.1088/0004-637X/763/1/15

24. Lu, R.-J., Wei, J.-J., Liang, E.-W., Zhang,B-.B., Lü, H.-J., Lü, L.-Z., Lei, W.-H., & Zhang, B.

, A Comprehensive Analysis of Fermi Gamma-Ray Burst Data. II. E pEvolution Patterns and Implications for the Observed Spectrum-Luminosity Relations, 2012, The Astrophysical Journal, 756, 112 9/2012 10.1088/0004-637X/756/2/112

23. Zheng, W., Akerlof, C. W., Pandey, S. B., McKay, T. A., Zhang,B-.B., Zhang, B., & Sakamoto,

T. , GRB 110709A, 111117A, and 120107A: Faint High-energy Gamma-Ray Photon Emission from Fermi-LAT Observations and Demographic Implications, 2012, The Astrophysical Journal, 756, 64 9/2012 10.1088/0004-637X/756/1/64

22. Fan, Y.-Z., Wei, D.-M., Zhang, F.-W., & Zhang, B-.B. , The Photospheric Radiation Model for the Prompt Emission of Gamma-Ray Bursts: Interpreting Four Observed Correlations, 2012, The Astrophysical Journal, 755, L6 8/2012 10.1088/2041-8205/755/1/L6

21. Birnbaum, T., Zhang, B., Zhang, B-.B., & Liang, E.-W. , Observational constraints on the external shock prior emission hypothesis of gamma-ray bursts, 2012, Monthly Notices of the Royal Astronomical Society, 422, 393 5/2012 10.1111/j.1365-2966.2012.20611.x

20. Zheng, W., Akerlof, C. W., Pandey, S. B., McKay, T. A., Zhang, B-.B., & Zhang, B. , Faint High-energy Gamma-Ray Photon Emission of GRB 081006A from Fermi Observations, 2012, The Astrophysical Journal, 745, 72 1/2012 10.1088/0004-637X/745/1/72

19. Liang, E.-W., Lü, H., Yi, S.-X., Zhang, B., Zhang,B-.B., & Zhang, J. , Discerning Emission Com- ponents in Early Afterglow Data and Constraining the Initial Lorentz Factor of Long GRB Fireball, 2011, International Journal of Modern Physics D, 20, 1955 0/2011 10.1142/S0218271811020007

18. Liang, E.-W., Yi, S.-X., Zhang, J., Lü, H.-J., Zhang, B-.B., & Zhang, B. , Constraining Gamma-ray Burst Initial Lorentz Factor with the Afterglow Onset Feature and Discovery of a Tight Γ0-E γ;,isoCorrelation, 2010, The Astrophysical Journal, 725, 2209 12/2010 10.1088/0004- 637X/725/2/2209

17. Lü, H.-J., Liang, E.-W., Zhang, B-.B., & Zhang, B. , A New Classification Method for Gamma-ray Bursts, 2010, The Astrophysical Journal, 725, 1965 12/2010 10.1088/0004-637X/725/2/1965

16. Swenson, C. A., Maxham, A., Roming, P. W. A., Schady, P., Vetere, L., Zhang, B.-B., Zhang, B., Holland, S. T., Kennea, J. A., Kuin, N. P. M., Oates, S. R., Page, K. L., & De Pasquale, M. , GRB 090926A and Bright Late-time Fermi Large Area Telescope Gamma-ray Burst Afterglows, 2010, The Astrophysical Journal, 718, L14 7/2010 10.1088/2041-8205/718/1/L14

15. Ryde, F., Axelsson, M., Zhang, B.-B., McGlynn, S., Pe’er, A., Lundman, C., Larsson, S., Battelino, M., Zhang, B., Bissaldi, E., Bregeon, J., Briggs, M. S., Chiang, J., de Palma, F., Guiriec, S., Larsson, J., Longo, F., McBreen, S., Omodei, N., Petrosian, V., Preece, R., & van der Horst, A. J. , Identification and Properties of the Photospheric Emission in GRB090902B, 2010, The Astrophysical Journal, 709, L172 2/2010 10.1088/2041-8205/709/2/L172

14. Cui, X.-H., Liang, E.-W., Lv, H.-J., Zhang, B-.B., & Xu, R.-X. , Towards the properties of long gamma-ray burst progenitors with Swift data, 2010, Monthly Notices of the Royal Astronomical Society, 401, 1465 1/2010 10.1111/j.1365-2966.2009.15760.x

13. Liang, E.-W., Lü, H.-J., Hou, S.-J., Zhang, B-.B., & Zhang, B. , A Comprehensive Analysis of Swift/X-Ray Telescope Data. IV. Single Power-Law Decaying Light Curves Versus Canonical Light Curves and Implications for a Unified Origin of X-Rays, 2009, The Astrophysical Journal, 707, 328 12/2009 10.1088/0004-637X/707/1/328

12. Racusin, J. L., Liang, E. W., Burrows, D. N., Falcone, A., Sakamoto, T., Zhang, B.-B., Zhang, B., Evans, P., & Osborne, J. , Jet Breaks and Energetics of Swift Gamma-Ray Burst X-Ray Afterglows, 2009, The Astrophysical Journal, 698, 43 6/2009 10.1088/0004-637X/698/1/43

11. Greiner, J., Krühler, T., Fynbo, J. P. U., Rossi, A., Schwarz, R., Klose, S., Savaglio, S., Tanvir,

N. R., McBreen, S., Totani, T., Zhang, B. B., Wu, X. F., Watson, D., Barthelmy, S. D., Beardmore, A. P., Ferrero, P., Gehrels, N., Kann, D. A., Kawai, N., Yoldaş, A. K.,Mészáros, P., Milvang-Jensen, B., Oates, S. R., Pierini, D., Schady, P., Toma, K., Vreeswijk, P. M., Yoldaş, A., Zhang, B., Afonso, P., Aoki, K., Burrows, D. N., Clemens, C., Filgas, R., Haiman, Z., Hartmann,

D. H., Hasinger, G., Hjorth, J., Jehin, E., Levan, A. J., Liang, E. W., Malesani, D., Pyo, T.-S., Schulze, S., Szokoly, G., Terada, K., & Wiersema, K. , GRB 080913 at Redshift 6.7, 2009, The Astrophysical Journal, 693, 1610 3/2009 10.1088/0004-637X/693/2/1610

10. Liang, E.-W., Racusin, J. L., Zhang, B., Zhang,B-.B., & Burrows, D. N. , A Comprehensive Analysis of Swift XRT Data. III. Jet Break Candidates in X-Ray and Optical Afterglow Light Curves, 2008, The Astrophysical Journal, 675, 528 3/2008 10.1086/524701

9. Racusin, J. L., Burrows, D. N., Falcone, A., Zhang, B., Liang, E., & Zhang, B.-B. , Swift X-ray GRB Afterglows and the Missing Jet Break Problem, 2007, Bulletin of the American Astronomical Society, 39, 10.07 12/2007

8. Qin, Y.-P., Lü, L.-Z., Zhang, F.-W., Zhang,B-.B., & Zhang, J. , The Neighborhood Function and Its Application to Identifying Large-Scale Structure in the Comoving Universe Frame, 2007, The Astrophysical Journal, 669, 692 11/2007 10.1086/521812

7. Zhang, F.-W., Qin, Y.-P., & Zhang, B-.B. , Dependence of Temporal Properties on Energy in Long-Lag, Wide-Pulse Gamma-Ray Bursts, 2007, Publications of the Astronomical Society of Japan, 59, 857 8/2007 10.1093/pasj/59.4.857

6. Troja, E., et al. , Swift Observations of GRB 070110: An Extraordinary X-Ray Afterglow Powered by the Central Engine, 2007, The Astrophysical Journal, 665, 599 8/2007 10.1086/519450

5. Zhang, B., Liang, E., Gupta, N., Zhang,B-.B., Virgili, F., & Dai, Z. G. , Messages from GRB 060218, 2007, Philosophical Transactions of the Royal Society of London Series A, 365, 1257 5/2007 10.1098/rsta.2006.1999

4. Zhang, B., Liang, E., Page, K. L., Grupe, D., Zhang,B-.B., Barthelmy, S. D., Burrows, D. N., Campana, S., Chincarini, G., Gehrels, N., Kobayashi, S., Mészáros, P., Moretti, A., Nousek, J. A., O’Brien, P. T., Osborne, J. P., Roming, P. W. A., Sakamoto, T., Schady, P., & Willingale, R. , GRB Radiative Efficiencies Derived from the Swift Data: GRBs versus XRFs, Long versus Short, 2007, The Astrophysical Journal, 655, 989 2/2007 10.1086/510110

3. Qin, Y.-P., Zhang, B-.B., Dong, Y.-M., Zhang, F.-W., Li, H.-Z., Jia, L.-W., Mao, L.-S., Lu, R.-J., Yi, T.-F., Cui, X.-H., & Zhang, Z.-B. , Method of determining cosmological parameter

ranges with samples of candles with an intrinsic distribution, 2006, Chinese Physics, 15, 1645 7/2006 10.1088/1009-1963/15/7/044

2. Peng, Z.-Y., Qin, Y.-P., Zhang, B-.B., Lu, R.-J., Jia, L.-W., & Zhang, Z.-B. , A test of the power-law relationship between gamma-ray burst pulse-width ratio and energy expected in fireballs and uniform jets, 2006, Monthly Notices of the Royal Astronomical Society, 368, 1351 5/2006 10.1111/j.1365-2966.2006.10206.x

1. Qin, Y.-P., Dong, Y.-M., Lu, R.-J., Zhang, B-.B., & Jia, L.-W. , Relationship between the Gamma-Ray Burst Pulse Width and Energy Due to the Doppler Effect of Fireballs, 2005, The Astrophysical Journal, 632, 1008 10/2005 10.1086/444408


Note: Publications ordered by importance & date. A full list can be found at https://ui.adsabs.harvard.edu/ public-libraries/41VS-8y-S4K-w9b4pN_nug