网站首页  > 师资力量  > 专任教师  > 教授
专任教师
师资力量
南京大学天文与空间科学学院目前有教学科研人员约30人,其中中国科学院院士4人(曲钦岳院士、苏定强院士、方成院士、孙义燧院士,曲钦岳院士和方成院士同时是第三世界科学院院士),博士生导师16人,教授16人,副教授5人,讲师7人,获得博士学位的青年学者23人。本学科拥有一批高水平的、在国内外有影响的学术带头人。曲钦岳院士、方成院士、苏定强院士曾担任中国天文学会理事长。方成院士曾担任国际天文学联合会副主席、孙义燧院士担任中国科学院数理学部常委。在各主要研究方向上优秀年轻人才也脱颖而出。戴子高教授、丁明德、李向东、陈鹏飞教授被聘为长江学者特聘教授,戴子高、李向东、丁明德、黄永锋、陈阳、周济林、陈鹏飞、施勇、王祥玉教授获国家杰出青年科学基金资助,丁明德教授获教育部优秀青年教师奖,陈阳、周济林、陈鹏飞、顾秋生、王祥玉、侯锡云、王发印入选教育部新(跨)世纪优秀人才支持计划,陈燕梅、程鑫、侯锡云教授获国家优秀青年科学基金项目。2002年主要由年轻教师为骨干组成的研究团队获得国家自然科学基金委创新研究群体基金的资助。
教授
研究领域:

Ÿ   航天器轨道力学

Ÿ   太阳系小天体动力学


陈鹏飞 | 长江学者特聘教授
研究领域:

主要从事天体物理专业太阳物理领域的研究,包括太阳耀斑、日冕物质抛射、暗条等活动现象。研究手段以磁流体力学数值模拟为主,部分从事观测资料处理工作。


陈阳 | 杰出青年
研究领域:

研究方向为高能星际物理。着重于超新星遗迹及其它气体爆炸性运动,以及从恒星到星系层次这类物理作用伴随的星(系)际激波和高温高能气体从射电到X、g射线多波段的辐射特性。 发表论文40篇。


陈燕梅 | 教授
研究领域:

主要从事活动星系核(AGN)及星系演化的研究,以光学光谱数据的分析见长,数据分析和理论研究相结合。课题涉及黑洞的增长和演化、星系的恒星形成历史、恒星形成和黑洞活动的相互影响,以及它们在星系演化过程中的作用等领域。


程鑫 | 教授 Professor
研究领域:

Study Fields: Solar Physics and Space Science

---Understanding Energetic Eruptions in the Heliosphere and Beyond 

Today of The Sun

Visited ScientistsUseful LinksUseful Tools

Papers for new PhD studentsPapers on Reconnection




Selected New Progress!! 

  




Project 1. Origin and Evolution of Coronal Mass Ejections

Coronal mass ejections (CMEs) and solar flares are the most energetic eruptive phenomena in our solar system and can release a large quantity of plasma and magnetic flux from the solar atmosphere into the solar wind, probably giving rise to severe space weather effects. The aim of this project is toward understanding the orgin and evolution of CMEs/flares through multi-wavelength observational perspective. The figure on the right shows a CME observed by the Large Angle and Spectrometric Coronagraph on board the Solar and Heliospheric Observatory. The zoom-in of the flaring region indicated by the white box shows an erupting hot magnetic flux rope (10 million-degree) at 131 angstrom observed by the Atmospheric Imaging Assembly telescope on board the Solar Dynamics Observatory.

Publications:

Cheng, X., Zhang, J., Liu, Y., Ding, M. D, 2011, ApJL 732, L25

Zhang, J., Cheng, X., Ding, M. D., 2012 Nature Communications 3, 747 (Featured)

Cheng, X., Zhang, J., Ding, M. D., et al., 2013, ApJ 763, 43

Cheng, X., Zhang, J., Kliem, B., Torok, T., et al. 2020, ApJ, 894, 85

Code for Kinematic analysis



Project 2. Structure and Evolution of Magnetic Flux Ropes

Magnetic flux rope (MFR) is a volumetic plasma structure with magnetic field lines wrapping around a central axis. It is a foundmental magnetic structure in the Universe, has been invloved in various astrophysical contexts like the magnetotail of the Earth, the Nebula and the black hole system. The aim of this project is to address the structure and evolution of the MFR, in particular the relation to the dynamics of CMEs via the combination of observation and MHD simulation. The figure on the right shows the emission feature of the pre-eruptive MFR on 2012 July 12 at the different temperatures (3-4 MK and 8-10 MK) and corresponding 3D magnetic structure.

Publications:

Cheng, X., Zhang, J., Saar, S. H., Ding, M. D., 2012, ApJ 761, 62

Cheng, X., Ding, M. D., Zhang, J., et al. 2014, ApJ 789, 93

Xing, C., Cheng, X., Ding, M. D., 2020, The Innovation, 3, 100059

Code for DEM inversion



Project 3. Magnetic Reconnection and Turbulence

Magnetic reconnection, a change of magnetic field connectivity, is a fundamental physical process in the Universe. During solar eruptions, the reconnection, taking place between CMEs and flares, releases magnetic energy explosively to power the CME eruption and the flare emission. The aim of this project is to reveal 3D features of magnetic reconnection and its relation to turbulence during CMEs/flares through observation and MHD simulation. The figure on the right displays 3D magnetic field structures during the flux rope eruption, in which the reconnection converts two sheared overlying field lines to a flare loop and a twisted field line that is added to the pre-existing rising flux rope.

Publications:

Sun, J. Q., Cheng, X., Ding, M. D., et al., 2015, Nature Communications 6, 7598 (Featured)

Cheng, X., Li, Y., Wan, L. F., et al., 2018, ApJ 866, 64 (AAS NOVA)

Cheng, X., Priest, E., Li, H. T., et al. 2023, Nature Communications 14, 2107 (ESA news)

Wang, Y. L., Cheng, X., Ding, M. D., et al. 2023 ApJL 954, L36 (AAS NOVA)




Project 4. Coronal Shocks and Solar Radio Bursts

As CMEs erupt upward, coronal shocks may form at the front of the CMEs, generaging metric type II radio bursts, a narrow-band radio emission enhancement excited at the local plasma frequency. On the other hand, eletron beams, may be accelerated by magentic reconnection, produce type III radio bursts simultaneously. At present, the questions of how coronal shocks are formed, what properties do they have, and what conditions do they need to generate type II/III radio emissions remain.  This project involves various ground-based solar radio observatories such as MUSER and space-based missions. The figure on the right represents a coronal shock wave driven by the erupting CME. The outermost bright front indicates the shock front, followed by a bright sheath region.

Publications:

Cheng, X., Zhang, J., Olmedo, O., et al., 2012, ApJL 745, L5

Su, W., Cheng, X., Ding, M. D., et al., 2015, ApJ 804, 88

Kou, Y. K., Cheng, X., Wang, Y. L., et al. 2022, Nature Communications, 13, 1680 (CESRA Highlights)

Flare_Type3_CME_list



Project 5. Predicting Space Weather

After experiencing a propagation phase of 1-3 days, CMEs may arrive at the Earth and take the form of magnetic clouds with the features of rotation of magnetic field, increased solar wind speed, depressed proton temperature, and low plasma beta. Due to the interaction with the magnetosphere and ionosphere, geomagnetic storms probably take place, seriously impacting on the safety of high-tech activities in outer space, such as disrupting communications, presenting a hazard to astronauts and so on. In this project, the aim is to predict the arrival time of CMEs taking advantage of kinematical models and initial parameters. The figure on the right shows a cartoon of a magnetic cloud interacting with the magnetosphere.

Publications:

Shi, T., Wang, Y., Wan, L., Cheng, X., Ding, M., Zhang, J., 2015, ApJ 806, 271



Group Members

Research Scientist: Yulei Wang (王雨雷)

Postdoc: Chen Xing (邢晨)

Graduate Students:

Jinghang Su     (苏敬航)  2024

Yuehong Chen  (陈悦虹)  2023

Zining Ren        (任子宁)  2023

Zhanhao Zhao  (赵展浩)  2022

Bitao Wang      (王碧涛)   2021

YuanKun Kou   (寇元坤)  2021

Zhuofei Li         (李卓霏)  2020


Previous Students:

Haitang Li (PhD in 2024 ->Assistant Professor at Southwest Jiaotong University)

Chen Xing (PhD in 2023 by double-degree progam of NJU and PSL-Paris Observatory)

Ziwen Huang (Master in 2021 ->PhD student at Max-Planck Institute for Solar System Research)

Linfeng Wan (Master in 2018 ->PhD student at University of California, Santa Cruz)

Wei Su (Co-supervisor, PhD in 2015 ->Associate Professor at Sun Yat-sen Univeristy)

Jianqing Sun (Co-supervisor, PhD in 2017 -> Research Scientist at Philips)


Visiting Scholars: 

Zhenjun Zhou (2018, Associate Professor at Sun Yat-sen Univeristy)

Lijuan Liu (2018, Associate Professor at Sun Yat-sen Univeristy)

戴子高 | 长江学者特聘教授, 二级教授
研究领域:

研究方向包括中子星、伽玛射线暴、快速射电暴、超亮超新星、宇宙学等。他和合作者共发表SCI论文234篇(截至2019年10月),包括Science 2篇、Nature Physics等子刊4篇、Physical Review Letters 3篇,其余绝大数论文均发表在国际天文一流核心刊物上。共被引用8300余篇次(ADS检索),连续五年入选ESI(或IOP)高被引作者榜单。代表性成果包括:(1)在伽玛暴方向上提出了研究其起源和中心引擎的新途径,即从星风介质揭示长伽玛暴起源于大质量恒星塌缩,预言了余辉光变曲线平台并揭示伽玛暴的中心引擎是强磁场毫秒脉冲星,在Science杂志发表的论文提出短伽玛暴的晚期X射线耀发产生于双中子星并合后的毫秒脉冲星表面磁重联机制;(2)在宇宙学方向上提出了研究暗能量和星系际磁场的新方法,即用伽玛暴发现了暗能量的状态方程参数范围,获得了星系际磁场依赖的次级伽玛辐射能谱;(3)提出了重复快速射电暴的脉冲星-小行星带碰撞模型和非重复快速射电暴的双中子星并合模型。这些成果不仅被发表在国际著名评述期刊Reviews of Modern Physics、Physics Reports、Annual Review of Astronomy and Astrophysics上的10篇综述文章多次系统引用,而且得到包括Roger Chevalier等多位美国科学院院士在内的国际权威专家的高度评价,甚至被大量观测验证和广泛应用,还被大篇幅写入Springer和Cambridge出版社出版的教科书。


丁明德 | 长江学者特聘教授
研究领域:

主要从事太阳活动的多波段光谱观测、太阳活动的物理机制、太阳大气的辐射动力学、空间天气学等领域研究。承担国家杰出青年科学基金、国家自然科学基金创新研究群体项目、国家973计划项目课题、国家自然科学基金重点项目、国家自然科学基金面上项目、天文联合基金重点项目、海外及港澳学者合作研究基金等科研项目10多项。已发表SCI论文160多篇。科研成果获1995年度教育部科技进步一等奖(排名第二)、1997年度国家自然科学三等奖(排名第三)、2004年度教育部自然科学一等奖(排名第一)。1999年获教育部首届“青年教师奖”,2003年获江苏青年五四奖章,2010年获得国务院政府特殊津贴。

何建华 | 教授 博士生导师
研究领域:

创立《引力宇宙学课题组》(独立课题组)

主要研究领域:

宇宙学,宇宙大尺度结构形成数值模拟,宇宙学星系巡天观测及数据分析,引力波数值模拟,  弱引力实验

课题组成员:

殷承江、邓珊珊、严丞豪、吴翰、林子皓,向杨阳,陈航,欧阳马霖

课题组毕业成员:

徐翔宇

课题组科研助理:

邱弋

课题组硬件资源:

课题组自主搭建了一个拥有超过1000个CPU核心的高性能专业计算平台。该平台由一个主节点和七个计算节点组成。计算节点均采用双路PCIE 5.0主板,并配备了两颗AMD EPYC 9684X芯片,每颗芯片内置96个高性能的AMD Zen4架构CPU核心。这些CPU核心的主频为2.55GHz,最大频率可达3.7GHz。每个芯片L3缓存达到1152MB。所有计算节点均配置了24根三星64G RDIMM DDR5 4800MHz内存条,总内存容量达到1536G,确保每个CPU核心平均拥有8G内存。此外,每个计算节点还配备了200G单口InfiniBand(IB)网卡,并通过一台200Gb Mellanox InfiniBand交换机实现节点间的高速互联。该平台采用FC接口,直接连接到一台196T的磁盘存储阵列。总之,该计算平台采用高度专业的设计,充分释放了内存通道,PCIE,IB网络性能,最大程度的减少了性能瓶颈。

软件方面,该计算平台采用unbuntu20.04操作系统, 安装有最新的GNU编译器以及OpenMPI软件库。特别的,该计算平台全面支持AVX-512,能够大幅提升部分矢量化程序的运行效率。除此之外,该平台采用Slurm作业调度系统。

研究生招生:

课题组计划每年招收研究生1~2名,待遇十分优厚。我们课题组每年收到大量同学申请,但是由于名额限制,所以无法满足每一位同学的需求。

顾秋生 | 教授
研究领域:

博士后:  高玉龙;窦晶


研究生:陈政伊;陆诗莹;徐璨;崔健童;龙柳泽;徐新凯


研究领域:

(1) 从射电、红外、光学和X射线波段研究近邻星系中心超大黑洞吸积活动;

(2) 恒星形成物理机制;

(3) 星系核活动与星暴的关联;

(4) 高红移星系的形成与演化。


郭洋 | 教授
研究领域:

天体物理和空间科学:太阳物理


● 太阳活动多波段观测及其物理机制的分析


● 太阳磁场的观测和建模


● 数据驱动磁流体力学模拟磁绳爆发





软件链接

MMC (Magnetic Modeling Codes)

RST (Radiation Synthesis Tools)

RST2 (Radiation Synthesis Tools maintained by Guoyin)

K-QSL (Kai's Quasi-Separatrix Layer calculation package) 

MPI-AMRVAC


Group Members

Post-doc

LIU Tie, GUO Jinhan

Graduate Students

FU Wentai, WU Hao, ZHANG Xiaomeng, CHEN Guoyin, ZHOU Chang, HUANG Lei, LI Yihua

Undergraduate Students

ZHU Zhiming


Graduated Students

PhD & MSc

YANG Kai, ZHONG Ze, QIU Ye, GUO Jinhan, ZHU Jiahao

BSc (Selected)

HE Leijie, ZHANG Yaoning, NAN Wenjie, XU Yu, ZHU Jiahao, FU Wentai, RAN Hao, LIU Yecheng, ZHANG Xiaomeng, CHEN Guoyin, CHEN Linyi, ZENG Baiyu, LI Yihua




黄永锋 | 杰出青年
研究领域:

主要从事高能天体物理尤其是宇宙伽玛射线暴、中子星、脉冲星、快速射电暴等的研究。到2018年10月,已发表SCI论文107篇,研究论文已被国内外同行他引逾1300篇次。2006年获得国家杰出青年科学基金资助,还曾主持过全国优秀博士学位论文作者专项基金和自然科学基金青年项目、面上项目等,2009-2013曾担任973项目课题组长。截止2018年10月,已指导博士毕业5人,指导硕士毕业十余人。

李川 | 教授
研究领域:

Project 1: Chinese Hα Solar Explorer (CHASE)

The Chinese Hα Solar Explorer (CHASE), dubbed "Xihe" -- Goddess of the Sun, was launched on October 14, 2021 as the first solar space mission of China National Space Administration (CNSA). The CHASE mission is designed to test a new satellite platform and conduct solar observations. The scientific payload of the CHASE mission is an Hα Imaging Spectrograph (HIS) which acquires spectroscopic observations at Hα (655.97 - 656.59 nm) and Fe I (656.78 - 657.06 nm) wavebands. A full-Sun scanning takes ~46 seconds, with a spectral sampling of 0.0024 nm and a spatial resolution of 1.2 arcsec. The science data are available to the community through the Solar Science Data Center of Nanjing University: https://ssdc.nju.edu.cn

Publications:

Topical Issue in SCPMA:

Special topic of CHASE mission

Focus Issue in ApJ Letters:

Focus on early results of CHASE

Li C., Fang C., Li Z., Ding M. D., Chen P. F., Qiu Y., et al. The Chinese Hα Solar Explorer (CHASE) mission: An overview, Sci. China-Phys. Mech. Astron., 65, 289602, 2022

Qiu Y., Rao S. H., Li C., Fang C., Ding M. D., Li Z., et al., Calibration procedures for the CHASE/HIS science data, Sci. China-Phys. Mech. Astron., 65, 289603, 2022

Fang C., Li C., Introduction to the Chinese Hα Solar Explorer (CHASE) mission, Chin. J. Space Sci., 42, 546, 2022

Li C., Tian H., Huang Y., New era of Chinese solar instruments, Sci China Tech Sci, 66, 1203, 2023

Li C., Fang C., Li Z., et al., Chinese Hα Solar Explorer (CHASE) -- a complementary space mission to the ASO-S, Research in Astronomy and Astrophysics, 19 (11), 165, 2019


Project 2:Solar energetic particles (SEPs)

SEPs, with energies from a few keV to several GeV, are produced by the release of magnetic energy on the Sun, notably flares and coronal mass ejections (CMEs). What I am interested is to clarify where and how SEPs are accelerated and to understand the processes of propagation for different species of SEPs.

Selected publications:

Chen X. M., Li C., Three-stage acceleration of solar energetic particles detected by Parker Solar Probe, ApJ Letters, 967, 33, 2024

Li T. M., Li C., Ding W. J., Chen P. F., Particle-in-cell simulation of 3He enrichment in solar energetic particles, ApJ, 922, 50, 2021

Xu Z. G., Li C., Ding M. D., Observations of a coronal shock wave and the production of solar energetic particles, ApJ, 840, 38, 2017

Li C., Firoz K. A., Sun L. P., Miroshnichenko L. I., Electron and proton acceleration during the first ground level enhancement event of solar cycle 24, ApJ, 770, 34, 2013

Li C., Owen S. J., Matthews S. A., Dai Y., Tang Y. H., Major electron events and coronal magnetic configurations of the related solar active regions, ApJ Letters, 720, 36, 2010

Li C., Dai Y., Vial J.-C., et al., Solar source of energetic particles in interplanetary space during the 2006 December 13 event, A&A, 503, 1013, 2009

Li C., Tang Y. H., Dai Y., Fang C., Vial J. -C., Flare magnetic reconnection and relativistic particles in the 2003 October 28 event, A&A, 472, 283, 2007

Li C., Tang Y. H., Dai Y., Zong W. G., Fang C., The acceleration characteristics of solar energetic particles in the 2000 July 14 event, A&A, 461, 1115, 2007


Project 3: Solar activities and SOC processes

Studing solar activities is important for understanding the physical processes of eruptive phenomena in the Universe. Self-organized criticality (SOC) and turbulence are the two intrinsic physical processes during the energy release in a nonlinear dynamical system. Both of them can produce eruptive events with power laws. What I am interested is to understand the mechanisms of solar activities and the nonlinear processes of astrophysical eruptions. 

Selected publications:

Rao S. H., Li C., Ding M. D., Hong J., Chen F., Fang C., et al., Height-dependent differential rotation of the solar atmosphere detected by CHASE, Nat. Astron., 8, 1102, 2024

Qiu Y., Li C., Guo Y., Li Z., Ding M. D., Kong L. G., Three-dimensional velocity fields of the solar filament eruptions detected by CHASE, ApJ Letters, 961, 30, 2024

Li C., Wang, W. B., Chen, P. F., Observations and simulations of self-organized criticality phenomena in astrophysics, Sci Sin-Phys Mech Astron, 52, 269501, 2022

Wang W. B., Li C., Tu Z. L., Guo J. H., Chen P. F., Wang F. Y., Avalanches of magnetic flux rope in the state of self-organized criticality, MNRAS, 512, 1567, 2022

Li C., Zhong S. J., Xu Z. G., et al., Waiting time distributions of solar and stellar flares: Poisson process or with memory?, MNRAS, 479, L139, 2018

Li C., Zhong S. J., Wang L., Su W., Fang C., Waiting time distributions of solar energetic particle events modeled with a non-stationary Poisson process, ApJ Letters, 792, L26, 2014


李向东 | 长江学者特聘教授
研究领域:

研究领域为高能天体物理,研究对象包括黑洞、中子星、超新星、X射线双星等。

李志远 | 教授
研究领域:

主要研究对象包括银河系中心的黑洞与星际介质、仙女座星系中的星际介质与X射线双星、本星系群中的矮星系、近邻星系中的超大质量黑洞、星系团中的热气体等。

刘佳成 | 教授
研究领域:
罗斌 |
研究领域:

X射线天文学,活动星系核,以及高能天体物理。在 The Astrophysical Journal等天文类一流期刊上发表论文60余篇, 被引用1600余次,其中第一作者11篇,被他引300余次。应邀为The Astrophysical Journal,Monthly Notices of the Royal Astronomical Society等天文国际核心期刊审稿。在多次大型国际科 学会议上做邀请报告和大会报告。


施勇 |
研究领域:

星系形成和演化,超大质量黑洞增长


研究领域:
研究领域:

射电(包括毫米、亚毫米波)天文观测;恒星形成;星际气体和分子光谱分析;尘埃偏振测量


王祥玉 | 杰出青年
研究领域:

主要从事高能宇宙线、高能中微子、伽玛射线暴等天体物理问题的研究。发表SCI论文 100 多篇(包含PRL 1 篇, Science 1 篇, Nature 1 篇),论文引用3000多 次。主要学术成果包括:(1)提出了极高能宇宙线起源的一种新模型--巨超新星遗迹模型, 解释了从第二个膝区往上全部宇宙线的起源, 并用此模型解释了 IceCube 高能中微子的起源;用巨超新星遗迹解释高能中微子的工作于 2016 年入选 ThomsonReuter 公司基本科学指标数据库(简称 ESI) 前 1%高被引论文。(2)通过分析费米卫星巡天数据,发现了数个星系的伽玛射线辐射,并发现第一个有伽玛辐射的超亮红外星系,将星系的红外-伽玛辐射的相关性延展至更高的光度范围 。 此工作被美国天文学会以“研究亮点"予以报道。此发现被国际上其他课题组所证实,并得到广泛引用, 获得2019年英国皇家物理学会(IOP)出版社发布的中国高被引作者奖;(3)对伽玛射线暴在不同阶段的高能伽玛辐射进行了系列研究,揭示了多个伽玛射线暴的GeV-TeV辐射起源于电子的逆康普顿散射机制;并通过分析GRB130427A余辉阶段的费米卫星观测数据,首次发现了电子逆康普顿散射成分的信号;(4)提出了超新星激波突围产生非热X射线和伽玛射线辐射的机制,并用它成功解释了超新星 2008D早期 X 射线辐射的观测。


王发印 | 教授
研究领域:

主要从事高能时域天文和宇宙学研究,包括伽玛射线暴、快速射电暴、引力波电磁对应体及以暂现源(伽玛射线暴、快速射电暴等)为工具研究宇宙学(加速膨胀和暗能量等)。发表SCI论文100余篇(包括Nature 3篇,第一作者和通讯作者的Nature子刊3篇),ESI高被引论文9篇,受邀撰写综述3篇,引用5000余次,归一化引用1000余次,连续四年(2020-2023年)入选爱思唯尔中国高被引学者。


人才培养

已毕业博士生5名,硕士生2名,在读研究生7名,6人获得研究生国家奖学金。指导的博士生获得江苏省优秀博士论文、南京大学优秀博士论文、博士后创新人才支持计划和江苏省卓越博士后等。担任本科生毕业论文指导教师,其中8本科生毕业论文在天文学三大杂志(ApJ,MNRAS,A&A)发表,1人获得江苏省优秀本科毕业论文。

王涛 |
研究领域:


研究领域包括星系形成与演化、星系团与大尺度结构以及超大质量黑洞与星系的共同增长。在各类天文国际核心期刊发表论文逾80篇,H因子37。主要学术成绩包括:以第一和唯一通讯作者在《自然》杂志发文揭示大质量、光学暗星系在宇宙早期的普遍存在;以第一和唯一通讯作者在《自然》杂志发文揭示超大质量黑洞在调制星系冷气体含量的核心作用,为黑洞的反馈机制影响星系的形成演化提供了重要观测证据;发现迄今已知红移最高,且同时具备大质量暗晕和剧烈恒星形成活动的一类新型的X射线星系团。应邀为Nature, Astrophysical Journal Letter, Astronomy & Astrophysics, Monthly Notices of the Royal Astronomical Society 等天文国际核心期刊审稿。担任JCMT时间分配委员会委员(2017-2019)和ALMA Proposal Review Committee ( APRC) 成员(2023-2024)。



谢基伟 | 教授
研究领域:

Research Group


Current members:

    Research Assistants: 

        YANG,Jia-Yi (杨佳祎);JIANG, Chao-Feng (姜朝峰)

    Post-Doc: 

        CHEN, Di-Chang  (陈迪昌)

    Ph.D students

        SHIN, Ke-Ting (辛科霆); ZHANG, Rui-Sheng (张睿晟); SUN, Meng-Fei(孙梦菲);AN, Dong-Sheng (安东升)

    Master students

        TU, Pei-Wei (涂培玮);WU, Di (武迪);ZHANG Xin-Yue (张欣悦)

    Undergraduates:

      A, Si-Ru (阿斯如)

        

Previous members:

        JIANG, Chao-Feng (姜朝峰) Ph.D in 2022, now research assitant in our group

        TANG, Wei (唐玮)research assistant in 2022, now graduate student at Imperial College London

        SU, Xiang-Ning (苏湘宁) Ph.D in 2021, now faculty in Shaoyang University, Hunan, China

        CHEN, Di-Chang  (陈迪昌)  Ph.D in 2021, now Post-Doc (LAMOST Fellow) in our group

        LI, Zi-Fan(李子凡)B.S. in 2022, now PhD student in PMO, China

        MO, Fan (莫凡) B.S. in 2022, now PhD student in PMO, China

        LIU, Shuai (刘帅)  B.S. in 2021, now PhD student in NAOC, China

        YANG, Jia-Yi (杨佳祎)  Ph.D in 2020, now research assitant in our group

        WANG, Zi-Xian (王梓先)  B.S. in 2019, now PhD student in University of Sydney, Austrilia 

        SHEN, Yu-Fu (申育夫)  B.S. in 2019, now PhD student in NAOC, China

        LIU, Zi-Bo (刘子博)  B.S. in 2018, now PhD student in Macau University of Science and Technology, China

        ZHANG, Ya-Peng  (张雅鹏)  B.S. in 2017, now PhD student in Leiden Observatory, Holland  

        ZHONG, Ze-Hao (钟泽昊)  B.S. in 2016, now PhD student in NAOC, China

        WANG, Xiao-YU (王啸宇)  B.S. in 2016, now PhD student in USTC, China




 Research Highlights


"Evolution of Hot Jupiters", In This Issue PNAS, Full paper published in PNAS 2023


"Overview of the LAMOST Survey in the First Decade", The Innovation,  2022


"LAMOST Helps in Planetary Census Across Time and Space" , Chinese Academy of Sciences press release, 2021


"Orbital Spacing Pattern of Planetary Systems with Super-Earths/sub-Neptunes", The Astronomical Journal, 2020


"Occurrence and Architecture of Planetary Systems with Super-Earths/sub-Neptunes" , The Astronomical Journal, 2020


"A power-law decay evolution scenario for polluted single white dwarfs", Nature Astronomy, 2019


"Introducing "Hoptunes", a New Class of Exoplanets", Kavlifoundation News, Full paper published in PNAS, 2018


"The Impact of Stars on Moons", Highlight in AAS NOVA, Full paper published in AJ, 2017


"Orbital Shape Distributions of Exoplanets" , BCAS,  Full paper published in PNAS, see also a story at IFL Science News "Lonely Planets Have Crazier Orbits Than Worlds With Companions", 2016


"NASA's Kepler Provides Insights on Enigmatic Planets", JPL news, Full paper published in ApJS, 2014


"41 New Transiting Planets in Kepler Field of View", NASA Kepler news, Full paper published in ApJS, 2012


"Astronomy Without A Telescope – A Snowball’s Chance"UNIVERSE TODAY news, Full paper published in ApJ, 2010


"Nearby Star System Could Support Earth-Like Planet" Space.com  news, Full paper published in ApJ, 2010

 





 Recent  Projects 


PAST: Planets Across Space and Time (“穿越”系列)

Over 5000 exoplanets have been discovered and thousands of candidates are yet to be confirmed. The discovered exoplanet population has expanded significantly from the solar neighborhood to a much larger area (orders of 1000 pc) in the Galaxy thanks to the improvement of observational technology. We are therefore entering a new era to study exoplanets in the Milky Way Galaxy. In the Galactic context, one of fundamental questions in studying exoplanets is: what are the differences in the properties of planetary systems at different positions (or compitions) of the Galaxy with different ages?  To address the question, in a series of papers from here on, we conduct statistical studies of planets at different positions in the Galaxy with different ages, a project that we dub Planets Across Space and Time (PAST). The answer to this question will provide insights on the formation and evolution of the ubiquitous and diverse exoplanets in different Galactic environments.


Publications:

Chen, D.-C., Xie, J.-W., Zhou, J.-L., et al. 2021. Planets Across Space and Time (PAST). I. Characterizing the Memberships of Galactic Components and Stellar Ages: Revisiting the Kinematic Methods and Applying to Planet Host Stars. The Astrophysical Journal 909. doi:10.3847/1538-4357/abd5be


Chen, D.-C., Yang, J.-Y., Xie, J.-W., et al. 2021. Planets Across Space and Time (PAST). II. Catalog and Analyses of the LAMOST-Gaia-Kepler Stellar Kinematic Properties. The Astronomical Journal 162. doi:10.3847/1538-3881/ac0f08


Chen, D.-C., Xie, J.~W., Zhou, J.-L., et al. 2022. Planets Across Space and Time (PAST). III. Morphology of the Planetary Radius Valley as a Function of Stellar Age and Metallicity in the Galactic Context Revealed by the LAMOST-Gaia-Kepler Sample. The Astronomical Journal 163. doi:10.3847/1538-3881/ac641f


Yang, J.-Y., Chen, D.-C., Xie, J.-W., et al. 2023. Planets Across Space and Time (PAST). IV. The Occurrence and Architecture of Kepler Planetary Systems as a Function of Kinematic Age Revealed by the LAMOST-Gaia-Kepler Sample. The Astronomical Journal 166. doi:10.3847/1538-3881/ad0368


Chen, D.-C., Xie, J.-W., Zhou, J.-L., et al. 2023. The evolution of hot Jupiters revealed by the age distribution of their host stars. Proceedings of the National Academy of Science 120. doi:10.1073/pnas.2304179120


POET: Planetary Orbit Eccentricity Trends (“诗人”系列)

Orbital eccentricity is one of the fundamental parameters in planetary dynamics, which provides crucial constraints on planet formation and evolution. Based on the fact that the solar system's planets have small orbital inclinations and eccentricities, Kant and Laplace in the 18th century put forward that the solar system formed from a nebula disk, laying the foundation for the modern theory of planet formation. Since the discovery of 51 Pegasi b in 1995, the number of exoplanets has increased dramatically. Furthermore, various surveys of spectroscopy and astrometry provide comprehensive characterizations for the host stars of exoplanets, allowing one to statistically study the relationship between stars and planets. Here we start a project, Planetary Orbit Eccentricity Trends (POET), to investigate how orbital eccentricities of planets depend on various stellar/planetary properties. 


Publications:

Xie, J.-W., Dong, S., Zhu, Z., et al. 2016, Exoplanet orbital eccentricities derived from LAMOST-Kepler analysis. Proceedings of the National Academy of Science, 113, 11431. doi:10.1073/pnas.1604692113


An, D.-S., Xie, J.-W., Dai, Y.-Z., Zhou, J.-L. 2023. Planetary Orbit Eccentricity Trends (POET). I. The Eccentricity-Metallicity Trend for Small Planets Revealed by the LAMOST-Gaia-Kepler Sample. The Astronomical Journal 165. doi:10.3847/1538-3881/acb533



DEB: Demographics of Exoplanets in Binaries (“新秀”系列)

Stars are thought to be commonly born and found in binary/multiple systems. Therefore, the demographics of exoplanets in binaries play a crucial role in statistically studying the whole exoplanet population in our Galaxy. Furthermore, the diverse orbital configurations and rich dynamics in planet-bearing binary systems provide valuable conditions to test various theories and models of planet formation and evolution. Here, we conduct a series of studies on the Demographics of Exoplanets in Binaries (DEB), aiming to find patterns from observations to deepen our understanding of planet formation and evolution.


Publications:

Su, X.-N., Xie, J.-W., Zhou, J.-L., et al. 2021. Demographics of Exoplanets in Binaries. I. Architecture of S-type Planetary Systems Revealed by the Radial-velocity Sample. The Astronomical Journal 162. doi:10.3847/1538-3881/ac2ba3



周济林 | 杰出青年
研究领域:

目前从事的研究领域:外行星系统形成与动力学。 承担国家杰出青年科学基金、国家科技部(973)项目子项目、国家自然基金重点项目、教育部新世纪优秀人才计划、教育部博士点项目等科研项目10多项。共发表论文50余篇,其中SCI论文40余篇。合作编著《现代天体力学导论》一部(排名第二)。多次被邀请在国际会议做综述报告。2004年,成果《映射方法及其在太阳系动力学中的应用》获教育部自然科学二等奖(第一完成人),2004年入选教育部新世纪优秀人才计划,2009年获得国家杰出青年科学基金资助。

周礼勇 | 教授
研究领域:

主要研究方向为太阳系天体动力学、行星系统动力学、非线性天体力学。近年主要研究兴趣在行星特洛伊天体和海王星外天体动力学、雅科夫斯基效应等非引力效应。


朱紫 | 教授
研究领域:

长期从事天文参考系研究和银河系天文学研究工作,主持多项国家自然科学基金面上项目,主要研究领域:天体测量方法、天文参考系和银河系天文学。发表SCI论文20多篇。


研究领域:

星际介质、射电天文、恒星形成、星系演化



Scientific interests: 

Radiative transfer between the Cosmic Microwave Background and cold dust and gas of galaxies in the early Universe. 

Physical conditions of dense molecular gas using dense molecular gas (traced by CS, HCN, HCO+, high-J CO, etc.)

Element abundances measured from gas phase

Galactic chemical evolution 

The stellar initial mass function

Astro-chemistry

Cosmic rays

Interaction between supernova remnants and molecular clouds 

Galaxy outflows

Active galactic nuclei